Artificial Neural Network-Based Prediction of Performances-Exhaust Emissions of Diesohol Piloted Dual Fuel Diesel Engine Under Varying Compressed Natural Gas Flowrates

2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Abhishek Paul ◽  
Subrata Bhowmik ◽  
Rajsekhar Panua ◽  
Durbadal Debroy

The present study surveys the effects on performance and emission parameters of a partially modified single cylinder direct injection (DI) diesel engine fueled with diesohol blends under varying compressed natural gas (CNG) flowrates in dual fuel mode. Based on experimental data, an artificial intelligence (AI) specialized artificial neural network (ANN) model have been developed for predicting the output parameters, viz. brake thermal efficiency (Bth), brake-specific energy consumption (BSEC) along with emission characteristics such as oxides of nitrogen (NOx), unburned hydrocarbon (UBHC), carbon dioxide (CO2), and carbon monoxide (CO) emissions. Engine load, Ethanol share, and CNG strategies have been used as input parameters for the model. Among the tested models, the Levenberg–Marquardt feed-forward back propagation with three input neurons or nodes, two hidden layers with ten neurons in each layer and six output neurons, and tansig-purelin activation function have been found to the optimal model topology for the diesohol–CNG platforms. The statistical results acquired from the optimal network topology such as correlation coefficient (0.992–0.999), mean square error (MSE) (0.0001–0.0009), and mean absolute percentage error (MAPE) (0.09–2.41%) along with Nash–Sutcliffe coefficient of efficiency (NSE), Kling–Gupta efficiency (KGE), mean square relative error, and model uncertainty established itself as a real-time robust type machine learning tool under diesohol–CNG paradigms. The study also incorporated a special type of measure, namely Pearson's Chi-square test or goodness of fit, which brings up the model validation to a higher level.

2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Subrata Bhowmik ◽  
Rajsekhar Panua ◽  
Durbadal Debroy ◽  
Abhishek Paul

The present study explores the impact of ethanol on the performance and emission characteristics of a single cylinder indirect injection (IDI) Diesel engine fueled with Diesel–kerosene blends. Five percent ethanol is added to Diesel–kerosene blends in volumetric proportion. Ethanol addition to Diesel–kerosene blends significantly improved the brake thermal efficiency (BTE), brake specific energy consumption (BSEC), oxides of nitrogen (NOx), total hydrocarbon (THC), and carbon monoxide (CO) emission of the engine. Based on engine experimental data, an artificial neural network (ANN) model is formulated to accurately map the input (load, kerosene volume percentage, ethanol volume percentage) and output (BTE, BSEC, NOx, THC, CO) relationships. A (3-6-5) topology with Levenberg–Marquardt feed-forward back propagation (trainlm) is found to be optimal network than other training algorithms for predicting input and output relationship with acceptable error. The mean square error (MSE) of 0.000225, mean absolute percentage error (MAPE) of 2.88%, and regression coefficient (R) of 0.99893 are obtained from the developed model. The study also attempts to make clear the application of fuzzy-based analysis to optimize the network topology of ANN model.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 584
Author(s):  
Vinay Arora ◽  
Sunil Kumar Mahla ◽  
Rohan Singh Leekha ◽  
Amit Dhir ◽  
Kyungroul Lee ◽  
...  

Biogas is a significant renewable fuel derived by sources of biological origin. One of today’s research issues is the effect of biofuels on engine efficiency. The experiments on the engine are complicated, time consuming and expensive. Furthermore, the evaluation cannot be carried out beyond the permissible limit. The purpose of this research is to build an artificial neural network successfully for dual fuel diesel engine with a view to overcoming experimental difficulties. Authors used engine load, bio-gas flow rate and n-butanol concentration as input parameters to forecast target variables in this analysis, i.e., smoke, brake thermal efficiency (BTE), carbon monoxide (CO), hydrocarbon (HC), nitrous-oxide (NOx). Estimated values and results of experiments were compared. The error analysis showed that the built model has quite accurately predicted the experimental results. This has been described by the value of Coefficient of determination (R2), which varies between 0.8493 and 0.9863 with the value of normalized mean square error (NMSE) between 0.0071 and 0.1182. The potency of the Nash-Sutcliffe coefficient of efficiency (NSCE) ranges from 0.821 to 0.8898 for BTE, HC, NOx and Smoke. This research has effectively emulated the on-board efficiency, emission, and combustion features of a dual-fuel biogas diesel engine taking the Swish activation mechanism in artificial neural network (ANN) model.


2018 ◽  
Vol 29 (8) ◽  
pp. 1413-1437 ◽  
Author(s):  
Subrata Bhowmik ◽  
Rajsekhar Panua ◽  
Subrata K Ghosh ◽  
Abhishek Paul ◽  
Durbadal Debroy

This study evaluates the effects of diesel fuel adulteration on the performance and exhaust emission characteristics of an existing diesel engine. Kerosene is added to diesel fuel in volumetric proportions of 5, 10, 15, and 20%. Adulterated fuel significantly reduced the oxides of nitrogen emissions of the engine. In view of the engine experimentations, artificial intelligence-based artificial neural network model has been developed to accurately predict the input–output relationships of the diesel engine under adulterated fuel. The investigation also attempts to explore the applicability of fuzzy logic in the selection of the network topology of artificial neural network model under adulterated fuel. A (2–7–5) topology is found to be optimal for predicting input parameters, namely load, diesel–kerosene blend and output parameters, namely brake thermal efficiency, brake-specific energy consumption, oxides of nitrogen, total hydrocarbon, carbon monoxide of the network. The developed artificial neural network model is enabled for predicting engine output responses with high accuracy. The regression coefficient (R) of 0.99887, mean square error of 1.5e-04 and mean absolute percentage error of 2.39% have been obtained from the plausible artificial neural network model.


2020 ◽  
Vol 38 (2A) ◽  
pp. 255-264
Author(s):  
Hanan A. R. Akkar ◽  
Sameem A. Salman

Computer vision and image processing are extremely necessary for medical pictures analysis. During this paper, a method of Bio-inspired Artificial Intelligent (AI) optimization supported by an artificial neural network (ANN) has been widely used to detect pictures of skin carcinoma. A Moth Flame Optimization (MFO) is utilized to educate the artificial neural network (ANN). A different feature is an extract to train the classifier. The comparison has been formed with the projected sample and two Artificial Intelligent optimizations, primarily based on classifier especially with, ANN-ACO (ANN training with Ant Colony Optimization (ACO)) and ANN-PSO (training ANN with Particle Swarm Optimization (PSO)). The results were assessed using a variety of overall performance measurements to measure indicators such as Average Rate of Detection (ARD), Average Mean Square error (AMSTR) obtained from training, Average Mean Square error (AMSTE) obtained for testing the trained network, the Average Effective Processing Time (AEPT) in seconds, and the Average Effective Iteration Number (AEIN). Experimental results clearly show the superiority of the proposed (ANN-MFO) model with different features.


Sign in / Sign up

Export Citation Format

Share Document