scholarly journals Environmental sustainability of municipal wastewater treatment through struvite precipitation: Influence of operational parameters

2020 ◽  
pp. 124856
Author(s):  
Avhafunani Mavhungu ◽  
Spyros Foteinis ◽  
Richard Mbaya ◽  
Vhahangwele Masindi ◽  
Ioannis Kortidis ◽  
...  
2014 ◽  
Vol 1030-1032 ◽  
pp. 387-390
Author(s):  
Chun Di Gao ◽  
Shi Xin Fan ◽  
Er Long Jiao ◽  
Hao Li ◽  
Wei Xiao Wang

A novel alternating oxic-anoxic operation mode of shortcut nitrification-denitrification was developed in a sequencing batch reactor at ambient temperature. Operational parameters favorable for maintaining the shortcut nitrification-denitrification were investigated and optimized. The experiments showed that alternating oxic-anoxic shortcut nitrification-denitrification system was able to be an independent treatment process in domestic wastewater treatment. And the optimization approach was so efficient that the main pollutant discharge targets achieved Standard A of the first class in "Discharge standard of pollutants for municipal wastewater treatment plant". Moreover, the reliability of the operation strategy in this experimentation was proved, which indicated the excellent nitrogen removal performances.


1990 ◽  
Vol 22 (3-4) ◽  
pp. 145-152 ◽  
Author(s):  
Gilbert Desbos ◽  
Frank Rogalla ◽  
Jacques Sibony ◽  
Marie-Marguerite Bourbigot

Biological aerated filters combine bacterial degradation of pollution by fixed biomass with physical filtration in a single reactor. Removal rates become independent of clarification and sludge setueability limits, and concentration of biomass is increased. Nitrifiers attach to the media, allowing nitrogen removal without sludge age constraints. Several fullsize plants with the BIOCARBONE process for industrial and municipal wastewater treatment have established the compacity, ease of operation and high removal rates achievable with this advanced treatment system. A new biofilter design offering simplified operation and increased performance is presented, which allows implementation of biofiltration for small wastewater treatment plants. Design data for carbon and nutrient removal were collected during extensive pilot tests. Hydraulic conditions and pollution loadings were varied in order to optimize the biological and operational parameters of the filter. The combination of an anaerobic and an aerobic zone eliminates the need for primary sedimentation. Pollution removal rates up to 20 kg COD/m3 d could be achieved, and a widely fluctuating load of up to twice that average loading can be treated without major effluent deterioration. If lower carbon loadings are used, nitrification is achieved in the upper aerated zone. By recirculating the effluent into the non-aerated lower zone, carbon and ammonia oxidation as well as denitrification and suspended solids retention could be achieved with an overall hydraulic retention time of four hours in one reactor.


2015 ◽  
Vol 73 (4) ◽  
pp. 790-797 ◽  
Author(s):  
Aleksandra Miłobędzka ◽  
Anna Witeska ◽  
Adam Muszyński

Filamentous population in activated sludge and key operational parameters of full-scale municipal wastewater treatment plants (WWTPs) with bulking problems representative for Poland were investigated with quantitative fluorescence in situ hybridization. Statistical analyses revealed few relationships between operational parameters and biovolume of filamentous bacteria. Sludge age was not only positively correlated with abundance of Chloroflexi (parametric correlation and principal component analysis (PCA)), but also differentiated Microthrix population (analysis of variance (ANOVA)). Phylum Chloroflexi and pH presented a negative relation during the study (PCA). ANOVA showed that pH of influent and sludge volume index (SVI) differentiated abundance of types 0803 and 1851 of Chloroflexi and candidate division TM7. SVI increased along with higher abundance of Microthrix (positive parametric and non-parametric correlations and positive relation in PCA). Biovolumes of morphotypes 0803 and 1851 of Chloroflexi were differentiated by organic matter in influent, also by nutrients in the case of Chloroflexi type 1851. Chemical and biological oxygen demands (COD and BOD5, respectively) were negatively correlated with Microthrix. COD also differentiated the abundance of Haliscomenobacter hydrossis. Results of the study can be used to prevent WWTPs from excessive proliferation of filamentous bacteria and operational problems caused by them – bulking and foaming of activated sludge.


2021 ◽  
Author(s):  
GM Itheshamul Islam

Nitrification is an essential microbial process in the global nitrogen cycle. The first step of nitrification is ammonia oxidation which is achieved by bacteria and archaea and is crucial in decreasing ammonia concentrations that are persistently high in wastewater. This study examined the composition, abundance and identity of the microbial community in activated sludge with a focus on characterizing ammonia oxidizing bacteria and archaea in a full-scale municipal wastewater treatment plant (MWTP). Specifically, two pharmaceutical compounds Tetracycline and Ibuprofen, and their effects on the community composition of bacteria and protozoa in activated sludge was investigated using PCR coupled with denaturing gradient gel electrophoresis (DGGE). In addition, the composition, abundance and activity of the ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) were analyzed from aerobic activated sludge, recycled sludge and anaerobic digesters of the Humber MWTP using molecular techniques such as PCR, Quantitative PCR, Reverse Transcription-PCR and DGGE. The findings demonstrated that Tetracycline did not appear to alter community composition of bacteria in the activated sludge, rather, the operational parameters of the sequencing batch reactors such as feeding rates and SRT have shown to alter the richness of bacterial communities. However, Ibuprofen affected some members in the protozoan community in activated sludge. In the full-scale Humber MWTP using the conventional activated sludge system, the aeration tanks contained 1.8 × 105 copies of the AOB amoA gene per 100 ng of DNA. In contrast, the anaerobic digester tanks contained 7.3 × 102 copies of the AOA amoA gene per 100ng of DNA. This study also found that AOB were dominant in activated sludge samples, regardless of the operational parameters. The quantification of cDNA transcripts of the amoA gene also indicated that AOB may be more active than AOA in the activated sludge system. Overall, it appears that AOA are very niche specific and thrive in very low oxygenated environments, while AOB proliferate and play a major role in aerobic ammonia oxidation occurring in MWTPs.


2021 ◽  
Author(s):  
GM Itheshamul Islam

Nitrification is an essential microbial process in the global nitrogen cycle. The first step of nitrification is ammonia oxidation which is achieved by bacteria and archaea and is crucial in decreasing ammonia concentrations that are persistently high in wastewater. This study examined the composition, abundance and identity of the microbial community in activated sludge with a focus on characterizing ammonia oxidizing bacteria and archaea in a full-scale municipal wastewater treatment plant (MWTP). Specifically, two pharmaceutical compounds Tetracycline and Ibuprofen, and their effects on the community composition of bacteria and protozoa in activated sludge was investigated using PCR coupled with denaturing gradient gel electrophoresis (DGGE). In addition, the composition, abundance and activity of the ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) were analyzed from aerobic activated sludge, recycled sludge and anaerobic digesters of the Humber MWTP using molecular techniques such as PCR, Quantitative PCR, Reverse Transcription-PCR and DGGE. The findings demonstrated that Tetracycline did not appear to alter community composition of bacteria in the activated sludge, rather, the operational parameters of the sequencing batch reactors such as feeding rates and SRT have shown to alter the richness of bacterial communities. However, Ibuprofen affected some members in the protozoan community in activated sludge. In the full-scale Humber MWTP using the conventional activated sludge system, the aeration tanks contained 1.8 × 105 copies of the AOB amoA gene per 100 ng of DNA. In contrast, the anaerobic digester tanks contained 7.3 × 102 copies of the AOA amoA gene per 100ng of DNA. This study also found that AOB were dominant in activated sludge samples, regardless of the operational parameters. The quantification of cDNA transcripts of the amoA gene also indicated that AOB may be more active than AOA in the activated sludge system. Overall, it appears that AOA are very niche specific and thrive in very low oxygenated environments, while AOB proliferate and play a major role in aerobic ammonia oxidation occurring in MWTPs.


2006 ◽  
Vol 5 (4) ◽  
pp. 685-692
Author(s):  
Elisabeta Chirila ◽  
Ionela Carazeanu Popovici ◽  
Techin Ibadula ◽  
Alice Iordache

2015 ◽  
Vol 4 (0) ◽  
pp. 9781780402925-9781780402925
Author(s):  
H. van der Roest ◽  
D. Lawrence ◽  
A. van Bentem

Sign in / Sign up

Export Citation Format

Share Document