Evaluation criteria to support cleaner construction and repair of airport runways: A review of the state of practice and recommendations for future practice

2021 ◽  
pp. 127776
Author(s):  
B.N.T. Alabi ◽  
T.U. Saeed ◽  
A. Amekudzi-Kennedy ◽  
J. Keller ◽  
S. Labi
Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 808
Author(s):  
Mattia Pesenti ◽  
Alberto Antonietti ◽  
Marta Gandolla ◽  
Alessandra Pedrocchi

While the research interest for exoskeletons has been rising in the last decades, missing standards for their rigorous evaluation are potentially limiting their adoption in the industrial field. In this context, exoskeletons for worker support have the aim to reduce the physical effort required by humans, with dramatic social and economic impact. Indeed, exoskeletons can reduce the occurrence and the entity of work-related musculoskeletal disorders that often cause absence from work, resulting in an eventual productivity loss. This very urgent and multifaceted issue is starting to be acknowledged by researchers. This article provides a systematic review of the state of the art for functional performance evaluation of low-back exoskeletons for industrial workers. We report the state-of-the-art evaluation criteria and metrics used for such a purpose, highlighting the lack of a standard for this practice. Very few studies carried out a rigorous evaluation of the assistance provided by the device. To address also this topic, the article ends with a proposed framework for the functional validation of low-back exoskeletons for the industry, with the aim to pave the way for the definition of rigorous industrial standards.


2020 ◽  
Vol 10 (8) ◽  
pp. 2864 ◽  
Author(s):  
Muhammad Asad ◽  
Ahmed Moustafa ◽  
Takayuki Ito

Artificial Intelligence (AI) has been applied to solve various challenges of real-world problems in recent years. However, the emergence of new AI technologies has brought several problems, especially with regard to communication efficiency, security threats and privacy violations. Towards this end, Federated Learning (FL) has received widespread attention due to its ability to facilitate the collaborative training of local learning models without compromising the privacy of data. However, recent studies have shown that FL still consumes considerable amounts of communication resources. These communication resources are vital for updating the learning models. In addition, the privacy of data could still be compromised once sharing the parameters of the local learning models in order to update the global model. Towards this end, we propose a new approach, namely, Federated Optimisation (FedOpt) in order to promote communication efficiency and privacy preservation in FL. In order to implement FedOpt, we design a novel compression algorithm, namely, Sparse Compression Algorithm (SCA) for efficient communication, and then integrate the additively homomorphic encryption with differential privacy to prevent data from being leaked. Thus, the proposed FedOpt smoothly trade-offs communication efficiency and privacy preservation in order to adopt the learning task. The experimental results demonstrate that FedOpt outperforms the state-of-the-art FL approaches. In particular, we consider three different evaluation criteria; model accuracy, communication efficiency and computation overhead. Then, we compare the proposed FedOpt with the baseline configurations and the state-of-the-art approaches, i.e., Federated Averaging (FedAvg) and the paillier-encryption based privacy-preserving deep learning (PPDL) on all these three evaluation criteria. The experimental results show that FedOpt is able to converge within fewer training epochs and a smaller privacy budget.


Sign in / Sign up

Export Citation Format

Share Document