scholarly journals Technology and material efficiency scenarios for net zero emissions in the UK steel sector

2021 ◽  
pp. 130216
Author(s):  
Alice Garvey ◽  
Jonathan Norman ◽  
John Barrett
2021 ◽  
Vol 42 (3) ◽  
pp. 349-369
Author(s):  
Robert Cohen ◽  
Karl Desai ◽  
Jennifer Elias ◽  
Richard Twinn

The UKGBC Net Zero Carbon Buildings Framework was published in April 2019 following an industry task group and extensive consultation process. The framework acts as guidance for achieving net zero carbon for operational energy and construction emissions, with a whole life carbon approach to be developed in the future. In consultation with industry, further detail and stricter requirements are being developed over time. In October 2019, proposals were set out for industry consultation on minimum energy efficiency targets for new and existing commercial office buildings seeking to achieve net zero carbon status for operational energy today, based on the performance levels that all buildings will be required to achieve by 2050. This was complemented by modelling work undertaken by the LETI network looking into net zero carbon requirements for new buildings. In January 2020 UKGBC published its guidance on the levels of energy performance that offices should target to achieve net zero and a trajectory for getting there by 2035. This paper describes the methodology behind and industry perspectives on UKGBC’s proposals which aim to predict the reduction in building energy intensity required if the UK’s economy is to be fully-powered by zero carbon energy in 2050. Practical application: Many developers and investors seeking to procure new commercial offices or undertake major refurbishments of existing offices are engaging with the ‘net zero carbon’ agenda, now intrinsic to the legislative framework for economic activity in the UK. A UKGBC initiative effectively filled a vacuum by defining a set of requirements including energy efficiency thresholds for commercial offices in the UK to be considered ‘net zero carbon’. This paper provides all stakeholders with a detailed justification for the level of these thresholds and what might be done to achieve them. A worked example details one possible solution for a new office.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Nana O. Bonsu

AbstractThe UK Plan for a Green Industrial Revolution aims to ban petrol and diesel cars by 2030 and transition to electric vehicles (EVs). Current business models for EV ownership and the transition to net-net zero emissions are not working for households in the lowest income brackets. However, low-income communities bear the brunt of environmental and health illnesses from transport air pollution caused by those living in relatively more affluent areas. Importantly, achieving equitable EV ownership amongst low-and middle-income households and driving policy goals towards environmental injustice of air pollution and net-zero emissions would require responsible and circular business models. Such consumer-focused business models address an EV subscription via low-income household tax rebates, an EV battery value-chain circularity, locally-driven new battery technological development, including EV manufacturing tax rebates and socially innovative mechanisms. This brief communication emphasises that consumer-led business models following net-zero emission vehicles shift and decisions must ensure positive-sum outcomes. And must focus not only on profits and competitiveness but also on people, planet, prosperity and partnership co-benefits.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ghasson Shabha ◽  
Francesca Barber ◽  
Paul Laycock

PurposeThere are 29 million homes in the UK, accounting for 14% of the UK's energy consumption. This is given that UK has one of the highest water and energy demands in Europe which needs to be addressed according to the Committee on Climate Change (CCC). Smart homes technology holds a current perception that it is principally used by “tech-savvy” users with larger budgets. However, smart home technology can be used to control water, heat and energy in the entire house. This paper investigates how smart home technology could be effectively utilised to aid the UK government in meeting climate change targets and to mitigate the environmental impact of a home in use towards reducing carbon emissions.Design/methodology/approachBoth primary and secondary data were sought to gain insight into the research problem. An epistemological approach to this research is to use interpretivism to analyse data gathered via a semi-structured survey. Two groups of participants were approached: (1) professionals who are deemed knowledgeable about smart home development and implementation and (2) users of smart home technology. A variety of open-ended questions were formulated, allowing participants to elaborate by exploring issues and providing detailed qualitative responses based on their experience in this area which were interpreted quantitatively for clearer analysis.FindingsWith fossil fuel reserves depleting, there is an urgency for renewable, low carbon energy sources to reduce the 5 tonnes annual carbon emissions from a UK household. This requires a multi-faceted and a multimethod approach, relying on the involvement of both the general public and the government in order to be effective. By advancing energy grids to make them more efficient and reliable, concomitant necessitates a drastic change in the way of life and philosophy of homeowners when contemplating a reduction of carbon emissions. If both parties are able to do so, the UK is more likely to reach its 2050 net-zero carbon goal. The presence of a smart meter within the household is equally pivotal. It has a positive effect of reducing the amount of carbon emissions and hence more need to be installed.Research limitations/implicationsFurther research is needed using a larger study sample to achieve more accurate and acceptable generalisations about any future course of action. Further investigation on the specifics of smart technology within the UK household is also needed to reduce the energy consumption in order to meet net-zero carbon 2050 targets due to failures of legislation.Practical implicationsFor smart homes manufacturers and suppliers, more emphasis should be placed to enhance compatibility and interoperability of appliances and devices using different platform and creating more user's friendly manuals supported by step-by-step visual to support homeowners in the light of the wealth of knowledge base generated over the past few years. For homeowners, more emphasis should be placed on creating online knowledge management platform easily accessible which provide virtual support and technical advice to home owners to deal with any operational and technical issues or IT glitches. Developing technical design online platform for built environment professionals on incorporating smart sensors and environmentally beneficial technology during early design and construction stages towards achieving low to zero carbon homes.Originality/valueThis paper bridges a significant gap in the body of knowledge in term of its scope, theoretical validity and practical applicability, highlighting the impact of using smart home technology on the environment. It provides an insight into how the UK government could utilise smart home technology in order to reduce its carbon emission by identifying the potential link between using smart home technology and environmental sustainability in tackling and mitigating climate change. The findings can be applied to other building types and has the potential to employ aspects of smart home technology in order to manage energy and water usage including but not limited to healthcare, commercial and industrial buildings.


2020 ◽  
Vol 87 ◽  
pp. 102523 ◽  
Author(s):  
Kathryn G. Logan ◽  
John D. Nelson ◽  
Benjamin C. McLellan ◽  
Astley Hastings

The Lancet ◽  
2019 ◽  
Vol 393 (10184) ◽  
pp. 1911 ◽  
Author(s):  
The Lancet
Keyword(s):  
Net Zero ◽  

Author(s):  
Shazia Farman Ali ◽  
Aaron Gillich

By 2050, the UK government plans to create ‘Net zero society’. 1 To meet this ambitious target, the deployment of low carbon technologies is an urgent priority. The low carbon heat recovery technologies such as heat recovery from sewage via heat pump can play an important role. It is based on recovering heat from the sewage that is added by the consumer, used and flushed in the sewer. This technology is currently successfully operating in many cities around the world. In the UK, there is also a rising interest to explore this technology after successful sewage heat recovery demonstration project at Borders College, Galashiels, Scotland. 2 However, further experimental research is needed to build the evidence base, replicate, and de-risk the concept elsewhere in the UK. The Home Energy 4 Tomorrow (HE4T) project at London South Bank University was created to address this evidence gap. This is the fourth article in the series of outputs on sewage heat recovery and presents some results using sewage data from the UK’s capital London. These data are scarce and provide useful information on the variation of flows and temperatures encountered in the sewers of the UK’s capital. Lastly, we discuss the recoverable heat potential along with policy implications for the UK heat strategy. Practical application This work focuses and accentuate that in order to meet climate change targets, substantial improvements can come by heat recovery from the raw (influent) and treated wastewater (effluent from wastewater treatment plant) that is still unexploited in the UK. The estimation presented indicates that there is much theoretical potential in the UK with significant opportunity for future energy and revenue retrieval along with GHGs emission reduction in the longer term to fulfil the ‘net zero’ objective. This work aims to raise awareness and seek support to promote pilot scale studies to help demonstrate technical and economic feasibility in the building industry.


2020 ◽  
Author(s):  
Mhairi Coyle ◽  
Ross Morrison ◽  
Rebekka Artz ◽  
Jagadeesh Yeluripati ◽  
Gillian Donaldson-Selby

<p>Greenhouse gas emissions from damaged peatlands in the UK contribute around 5% to the annual national UK emissions. This has prompted a large national effort to restore these ecosystems as part of the package of action that aims to deliver net zero by 2050 in the UK and 2045 in Scotland. Eroded peatlands cover an estimated 275kha in Scotland, yet continuous monitoring data on the carbon losses from such sites are very sparse, in part due to the challenge in instrumenting such remote and complex terrain with eddy covariance equipment. We present a full, pre-restoration, 18-month data series of carbon dioxide and energy budget from a typical Scottish eroded peatland and show initial data that suggests sensitivity of the sign of the net annual CO2 budget to interannual climate variability.</p>


Author(s):  
David J. C. MacKay

While the main thrust of the Discussion Meeting Issue on ‘Material efficiency: providing material services with less material production’ was to explore ways in which society's net demand for materials could be reduced, this review examines the possibility of converting industrial energy demand to electricity, and switching to clean electricity sources. This review quantifies the scale of infrastructure required in the UK, focusing on wind and nuclear power as the clean electricity sources, and sets these requirements in the context of the decarbonization of the whole energy system using wind, biomass, solar power in deserts and nuclear options. The transition of industry to a clean low-carbon electricity supply, although technically possible with several different technologies, would have very significant infrastructure requirements.


2021 ◽  
Author(s):  
Ramit Debnath ◽  
Ronita Bardhan ◽  
Darshil U. Shah ◽  
Antiopi Koronaki ◽  
Aurimas Bukauskas ◽  
...  

This working paper is an evidence submitted to the Royal Institution for British Architects that makes the case that the built environment must drastically reduce its carbon emissions to work towards net zero. Here we advocate for climate repair through the built environment by decarbonising UK’s building sector through both improved energy efficiency of buildings and the use of nature‐based solutions, such as engineered timber and natural insulating materials. The UK has the opportunity to lead by example at the upcoming United Nations COP‐26 conference and beyond, as we implement the solutions in the coming years.


Sign in / Sign up

Export Citation Format

Share Document