Updating meta-analyses leads to larger type I errors than publication bias

2009 ◽  
Vol 62 (8) ◽  
pp. 825-830.e10 ◽  
Author(s):  
George F. Borm ◽  
A. Rogier T. Donders
2019 ◽  
Vol 227 (4) ◽  
pp. 261-279 ◽  
Author(s):  
Frank Renkewitz ◽  
Melanie Keiner

Abstract. Publication biases and questionable research practices are assumed to be two of the main causes of low replication rates. Both of these problems lead to severely inflated effect size estimates in meta-analyses. Methodologists have proposed a number of statistical tools to detect such bias in meta-analytic results. We present an evaluation of the performance of six of these tools. To assess the Type I error rate and the statistical power of these methods, we simulated a large variety of literatures that differed with regard to true effect size, heterogeneity, number of available primary studies, and sample sizes of these primary studies; furthermore, simulated studies were subjected to different degrees of publication bias. Our results show that across all simulated conditions, no method consistently outperformed the others. Additionally, all methods performed poorly when true effect sizes were heterogeneous or primary studies had a small chance of being published, irrespective of their results. This suggests that in many actual meta-analyses in psychology, bias will remain undiscovered no matter which detection method is used.


2018 ◽  
Author(s):  
Frank Renkewitz ◽  
Melanie Keiner

Publication biases and questionable research practices are assumed to be two of the main causes of low replication rates observed in the social sciences. Both of these problems do not only increase the proportion of false positives in the literature but can also lead to severely inflated effect size estimates in meta-analyses. Methodologists have proposed a number of statistical tools to detect and correct such bias in meta-analytic results. We present an evaluation of the performance of six of these tools in detecting bias. To assess the Type I error rate and the statistical power of these tools we simulated a large variety of literatures that differed with regard to underlying true effect size, heterogeneity, number of available primary studies and variation of sample sizes in these primary studies. Furthermore, simulated primary studies were subjected to different degrees of publication bias. Our results show that the power of the detection methods follows a complex pattern. Across all simulated conditions, no method consistently outperformed all others. Hence, choosing an optimal method would require knowledge about parameters (e.g., true effect size, heterogeneity) that meta-analysts cannot have. Additionally, all methods performed badly when true effect sizes were heterogeneous or primary studies had a small chance of being published irrespective of their results. This suggests, that in many actual meta-analyses in psychology bias will remain undiscovered no matter which detection method is used.


2018 ◽  
Author(s):  
Caleb Z. Marshall

We discuss how questionable research practices in behavioral science (such as p-hacking) effect meta-analyses. Moreover, we argue that abandoning meta-analytic techniques is an overreaction to concerns of type I errors.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 962 ◽  
Author(s):  
Judith ter Schure ◽  
Peter Grünwald

Studies accumulate over time and meta-analyses are mainly retrospective. These two characteristics introduce dependencies between the analysis time, at which a series of studies is up for meta-analysis, and results within the series. Dependencies introduce bias — Accumulation Bias — and invalidate the sampling distribution assumed for p-value tests, thus inflating type-I errors. But dependencies are also inevitable, since for science to accumulate efficiently, new research needs to be informed by past results. Here, we investigate various ways in which time influences error control in meta-analysis testing. We introduce an Accumulation Bias Framework that allows us to model a wide variety of practically occurring dependencies including study series accumulation, meta-analysis timing, and approaches to multiple testing in living systematic reviews. The strength of this framework is that it shows how all dependencies affect p-value-based tests in a similar manner. This leads to two main conclusions. First, Accumulation Bias is inevitable, and even if it can be approximated and accounted for, no valid p-value tests can be constructed. Second, tests based on likelihood ratios withstand Accumulation Bias: they provide bounds on error probabilities that remain valid despite the bias. We leave the reader with a choice between two proposals to consider time in error control: either treat individual (primary) studies and meta-analyses as two separate worlds — each with their own timing — or integrate individual studies in the meta-analysis world. Taking up likelihood ratios in either approach allows for valid tests that relate well to the accumulating nature of scientific knowledge. Likelihood ratios can be interpreted as betting profits, earned in previous studies and invested in new ones, while the meta-analyst is allowed to cash out at any time and advice against future studies.


Methodology ◽  
2015 ◽  
Vol 11 (3) ◽  
pp. 110-115 ◽  
Author(s):  
Rand R. Wilcox ◽  
Jinxia Ma

Abstract. The paper compares methods that allow both within group and between group heteroscedasticity when performing all pairwise comparisons of the least squares lines associated with J independent groups. The methods are based on simple extension of results derived by Johansen (1980) and Welch (1938) in conjunction with the HC3 and HC4 estimators. The probability of one or more Type I errors is controlled using the improvement on the Bonferroni method derived by Hochberg (1988) . Results are illustrated using data from the Well Elderly 2 study, which motivated this paper.


2019 ◽  
Author(s):  
Amanda Kvarven ◽  
Eirik Strømland ◽  
Magnus Johannesson

Andrews & Kasy (2019) propose an approach for adjusting effect sizes in meta-analysis for publication bias. We use the Andrews-Kasy estimator to adjust the result of 15 meta-analyses and compare the adjusted results to 15 large-scale multiple labs replication studies estimating the same effects. The pre-registered replications provide precisely estimated effect sizes, which do not suffer from publication bias. The Andrews-Kasy approach leads to a moderate reduction of the inflated effect sizes in the meta-analyses. However, the approach still overestimates effect sizes by a factor of about two or more and has an estimated false positive rate of between 57% and 100%.


2020 ◽  
Vol 39 (3) ◽  
pp. 185-208
Author(s):  
Qiao Xu ◽  
Rachana Kalelkar

SUMMARY This paper examines whether inaccurate going-concern opinions negatively affect the audit office's reputation. Assuming that clients perceive the incidence of going-concern opinion errors as a systematic audit quality concern within the entire audit office, we expect these inaccuracies to impact the audit office market share and dismissal rate. We find that going-concern opinion inaccuracy is negatively associated with the audit office market share and is positively associated with the audit office dismissal rate. Furthermore, we find that the decline in market share and the increase in dismissal rate are primarily associated with Type I errors. Additional analyses reveal that the negative consequence of going-concern opinion inaccuracy is lower for Big 4 audit offices. Finally, we find that the decrease in the audit office market share is explained by the distressed clients' reactions to Type I errors and audit offices' lack of ability to attract new clients.


Sign in / Sign up

Export Citation Format

Share Document