Progress in the design and development of “fast-dissolving” electrospun nanofibers based drug delivery systems - A systematic review

2020 ◽  
Vol 326 ◽  
pp. 482-509 ◽  
Author(s):  
Brabu Balusamy ◽  
Asli Celebioglu ◽  
Anitha Senthamizhan ◽  
Tamer Uyar
Author(s):  
Bibhu Prasad Panda ◽  
N.S Dey ◽  
M.E.B. Rao

Over the past few decades, there has been an increased interest for innovative drug delivery systems to improve safety, efficacy and patient compliance, thereby increasing the product patent life cycle. The discovery and development of new chemical entities is not only an expensive but also time consuming affair. Hence the pharmaceutical industries are focusing on the design and development of innovative drug delivery systems for existing drugs. One such delivery system is the fast disintegrating oral film, which has gained popularity among pediatric and geriatric patients. This fast disintegrating film with many potential benefits of a fast disintegrating tablet but devoid of friability and risk of choking is more acceptable to pediatric and geriatric patients. Formulation of fast disintegrating film can be achieved by various techniques, but common methods of preparation include spraying and casting. These film forming techniques use hydrophilic film former in combination with suitable excipients, which allow the film to disintegrate or dissolve quickly in the mouth within a few seconds without the administration of water. In view of the advantages of the fast disintegrating films over the fast disintegrating tablets and other dosage forms, it has the potential for commercial exploitation. The oral film dosage form not only has certain advantages of other fast disintegrating systems but also satisfies the unmet needs of the market. The present review emphasizes on the potential benefits, design and development of robust, stable, and innovative orally fast- disintegrating films and their future scenarios on a global market as a pharmaceutical dosage form.  


2021 ◽  
Vol 04 ◽  
Author(s):  
Anna L.M.M. Toledo ◽  
Talita N. da Silva ◽  
Arianne C. dos S. Vaucher ◽  
Arthur H. V. Miranda ◽  
Gabriela C. C. Silva de Miranda ◽  
...  

Background: The demand for novel biomaterials has been exponentially rising in the last years as well as the searching for new technologies able to produce more efficient products in both drug delivery systems and regenerative medicine. Objective: The technique that can pretty well encompass the needs for novel and high-end materials with a relatively low-cost and easy operation is the electrospinning of polymer solutions. Methods: Electrospinning usually produces ultrathin fibers that can be applied in a myriad of biomedical devices including sustained delivery systems for drugs, proteins, biomolecules, hormones, etc that can be applied in a broad spectrum of applications, from transdermal patches to cancer-related drugs. Results: Electrospun fibers can be produced to mimic certain tissues of the human body, being an option to create new scaffolds for implants with several advantages. Conclusions: In this review, we aimed to encompass the use of electrospun fibers in the field of biomedical devices, more specifically in the use of electrospun nanofibers applications toward the production of drug delivery systems and scaffolds for tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document