Carbonation of concrete made with high amount of fly ash and recycled concrete aggregates for utilization of CO2

2019 ◽  
Vol 29 ◽  
pp. 12-19 ◽  
Author(s):  
Rawaz Kurda ◽  
Jorge de Brito ◽  
José D. Silvestre
2020 ◽  
Vol 10 (1) ◽  
pp. 351 ◽  
Author(s):  
Patrícia Rodrigues ◽  
José D. Silvestre ◽  
Inês Flores-Colen ◽  
Cristina A. Viegas ◽  
Hawreen H. Ahmed ◽  
...  

This study applies a methodology to evaluate the ecotoxicological potential of raw materials and cement-based construction materials. In this study, natural aggregates and Portland cement were replaced with non-conventional recycled concrete aggregates (RA) and fly ash (FA), respectively, in the production of two concrete products alternative to conventional concrete (used as reference). The experimental program involved assessing both the chemical properties (non-metallic and metallic parameters) and ecotoxicity data (battery of tests with the luminescent bacterium Vibrio fischeri, the freshwater crustacean Daphnia magna, and the yeast Saccharomyces cerevisiae) of eluates obtained from leaching tests of RA, FA, and the three concrete mixes. Even though the results indicated that RA and FA have the ability to release some chemicals into the water and induce its alkalinisation, the respective eluate samples presented no or low levels of potential ecotoxicity. However, eluates from concrete mixes produced with a replacement ratio of Portland cement with 60% of FA and 100% of natural aggregates and produced with 60% of FA and 100% of RA were classified as clearly ecotoxic mainly towards Daphnia magna mobility. Therefore, raw materials with weak evidences of ecotoxicity could lead to the production of concrete products with high ecotoxicological potential. Overall, the results obtained highlight the importance of integrating data from the chemical and ecotoxicological characterization of materials’ eluate samples aiming to assess the possible environmental risk of the construction materials, namely of incorporating non-conventional raw materials in concrete, and contributing to achieve construction sustainability.


2010 ◽  
Vol 146-147 ◽  
pp. 1925-1929
Author(s):  
Yuan Xu ◽  
Ru Heng Wang ◽  
Hua Chuan Yao

First, the fundamental characteristic of recycled concrete aggregate wasstudied. Then, the recycled concrete spiciemen with different maximum size was tested. The results showed that: the apparent density and bulk density of recycled concrete aggregates was smaller than the natural rock, but the moisture content, crushed index, water absorption was higher. The workability of recycled concrete improved with increase of water and fly ash, but its strength decreased as the increase of water and fly ash. The research on performance and strength of recycled concrete aggregate will provide certain theoretical basis in the application process.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7499
Author(s):  
Miren Etxeberria

The fabrication of conventional concrete, as well as remains from demolition, has a high environmental impact. This paper assessed the eco-efficiency of concrete made with uncarbonated recycled concrete aggregates (RCA) and fly ash (FA). Two concrete series were produced with an effective water/cement ratio of 0.50 (Series 1) and 0.40 (Series 2). In both series, concretes were produced using 0% and 50% of RCA with 0%, 25% and 50% FA. After analysing the compressive strength, and carbonation and chloride resistance of those concretes, their eco-efficiency based on the binder intensity and CO2-eq intensity was assessed. We found that the use of 50% uncarbonated RCA improved the properties of concretes produced with FA with respect to using natural aggregates. The concrete made of 25% FA plus RCA was considered the most eco-efficient based on the tests of compressive, carbonation and chloride properties with the values of 4.1 kg CO2 m−3 MPa−1, 76.3 kg CO2 m−3 mm−1 year0.5 and 0.079 kg CO2 m−3 C−1, respectively. The uncarbonated RCA improved carbonation resistance, and FA improved chloride resistance. It can be concluded that the use of 50% un-carbonated RCA combined with FA considerably enhanced the properties of hardened concrete and their eco-efficiency with respect to concretes produced with natural aggregates.


2013 ◽  
Vol 25 (2) ◽  
pp. 243-251 ◽  
Author(s):  
Weerachart Tangchirapat ◽  
Chaiyanunt Rattanashotinunt ◽  
Rak Buranasing ◽  
Chai Jaturapitakkul

Sign in / Sign up

Export Citation Format

Share Document