An exact Riemann solver for compressible two-phase flow models containing non-conservative products

2007 ◽  
Vol 222 (1) ◽  
pp. 217-245 ◽  
Author(s):  
Vincent Deledicque ◽  
Miltiadis V. Papalexandris
2021 ◽  
Vol 149 ◽  
pp. 104881
Author(s):  
H. Bansal ◽  
P. Schulze ◽  
M.H. Abbasi ◽  
H. Zwart ◽  
L. Iapichino ◽  
...  

2017 ◽  
Vol 95 ◽  
pp. 199-219 ◽  
Author(s):  
M. De Lorenzo ◽  
Ph. Lafon ◽  
M. Di Matteo ◽  
M. Pelanti ◽  
J.-M. Seynhaeve ◽  
...  

2013 ◽  
Vol 737 ◽  
pp. 146-175 ◽  
Author(s):  
S. LeMartelot ◽  
R. Saurel ◽  
O. Le Métayer

AbstractExact compressible one-dimensional nozzle flow solutions at steady state are determined in various limit situations of two-phase liquid–gas mixtures. First, the exact solution for a pure liquid nozzle flow is determined in the context of fluids governed by the compressible Euler equations and the ‘stiffened gas’ equation of state. It is an extension of the well-known ideal-gas steady nozzle flow solution. Various two-phase flow models are then addressed, all corresponding to limit situations of partial equilibrium among the phases. The first limit situation corresponds to the two-phase flow model of Kapila et al. (Phys. Fluids, vol. 13, 2001, pp. 3002–3024), where both phases evolve in mechanical equilibrium only. This model contains two entropies, two temperatures and non-conventional shock relations. The second one corresponds to a two-phase model where the phases evolve in both mechanical and thermal equilibrium. The last one corresponds to a model describing a liquid–vapour mixture in thermodynamic equilibrium. They all correspond to two-phase mixtures where the various relaxation effects are either stiff or absent. In all instances, the various flow regimes (subsonic, subsonic–supersonic, and supersonic with shock) are unambiguously determined, as well as various nozzle solution profiles.


2012 ◽  
Author(s):  
Kaushik Balakrishnan ◽  
John B. Bell ◽  
Allen L. Kuhl ◽  
W. Michael Howard

2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Jorge Pérez Mañes ◽  
Victor Hugo Sánchez Espinoza ◽  
Sergio Chiva Vicent ◽  
Michael Böttcher ◽  
Robert Stieglitz

This paper deals with the validation of the two-phase flow models of the CFD code NEPTUNEC-CFD using experimental data provided by the OECD BWR BFBT and PSBT Benchmark. Since the two-phase models of CFD codes are extensively being improved, the validation is a key step for the acceptability of such codes. The validation work is performed in the frame of the European NURISP Project and it was focused on the steady state and transient void fraction tests. The influence of different NEPTUNE-CFD model parameters on the void fraction prediction is investigated and discussed in detail. Due to the coupling of heat conduction solver SYRTHES with NEPTUNE-CFD, the description of the coupled fluid dynamics and heat transfer between the fuel rod and the fluid is improved significantly. The averaged void fraction predicted by NEPTUNE-CFD for selected PSBT and BFBT tests is in good agreement with the experimental data. Finally, areas for future improvements of the NEPTUNE-CFD code were identified, too.


Sign in / Sign up

Export Citation Format

Share Document