A Schwarz generalized eigen-oscillation spectral element method (GeSEM) for 2-D high frequency electromagnetic scattering in dispersive inhomogeneous media

2008 ◽  
Vol 227 (23) ◽  
pp. 9933-9954 ◽  
Author(s):  
Wei Cai ◽  
Xia Ji ◽  
Jiguang Sun ◽  
Sihong Shao
Author(s):  
Akemi Nishida ◽  
Kazuhiko Iigaki

A coaxial double-pipe structure is to be used in the primary and auxiliary coolant system of a high-temperature gas-cooled reactor. In order to study the vibration characteristics of the coaxial double-pipe structure, hammering experiments were performed using specimens of the structure. Because the structural responses obtained in the experiments contained high-frequency components, impact response analysis was performed by using the spectral element method, which has high accuracy in the high-frequency region. A comparison between analysis results and experiment results showed good agreement between them. We also performed parametric studies on the damping properties of the specimens. The damping properties determined from the experiment results indicated that the inner and outer pipes had different damping properties.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
M. R. Machado ◽  
J. M. C. Dos Santos

The paper examines the influence of uncertainty parameters on the wave propagation responses at high frequencies for a damaged beam structure in the structural reliability context. The reliability analyses were performed using the perturbation method, First-Order Reliability Method (FORM), and response surface method (RSM) which were compared with Monte Carlo simulation (MCS) under the spectral element method environment. The simulated results were performed to investigate the effects of material property and geometric uncertainties on the response at high frequency modes, such as the computational efficiency of reliability methods. For the first time, the spectral element method is used in the context of reliability analysis at medium and high frequency bands applied to damage detection. It has shown the effects of parameters uncertainty on the dynamic beam response due on an impulsive load and the robustness of each method. Numerical examples in a bending vibrating beam with random parameters are performed to verify the computational efficiency of the present study.


2019 ◽  
Vol 24 (1) ◽  
pp. 28 ◽  
Author(s):  
Koen Bastiaens ◽  
Mitrofan Curti ◽  
Dave Krop ◽  
Sultan Jumayev ◽  
Elena Lomonova

This paper concerns the modeling of eddy current losses in conductive materials in the vicinity of a high-frequency transformer; more specifically, in two-dimensional problems where a high ratio between the object dimensions and the skin-depth exists. The analysis is performed using the Spectral Element Method (SEM), where high order Legendre–Gauss–Lobatto polynomials are applied to increase the accuracy of the results with respect to the Finite Element Method (FEM). A convergence analysis is performed on a two-dimensional benchmark system, for both the SEM and FEM. The benchmark system consists of a high-frequency transformer confined by a conductive cylinder and is free of complex geometrical shapes. Two different objectives are investigated. First, the discretizations at which the relative error with respect to a reference solution is minimized are compared. Second, the discretizations at which the trade-off between computational effort and accuracy is optimized are compared. The results indicated that by applying the SEM to the two-dimensional benchmark system, a higher accuracy per degree of freedom and significantly lower computation time are obtained with respect to the FEM. Therefore, the SEM is proven to be particularly useful for this type of problem.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Dmitriy Konovalov ◽  
Anatoly Vershinin ◽  
Konstantin Zingerman ◽  
Vladimir Levin

Modern high-performance computing systems allow us to explore and implement new technologies and mathematical modeling algorithms into industrial software systems of engineering analysis. For a long time the finite element method (FEM) was considered as the basic approach to mathematical simulation of elasticity theory problems; it provided the problems solution within an engineering error. However, modern high-tech equipment allows us to implement design solutions with a high enough accuracy, which requires more sophisticated approaches within the mathematical simulation of elasticity problems in industrial packages of engineering analysis. One of such approaches is the spectral element method (SEM). The implementation of SEM in a CAE system for the solution of elasticity problems is considered. An important feature of the proposed variant of SEM implementation is a support of hybrid curvilinear meshes. The main advantages of SEM over the FEM are discussed. The shape functions for different classes of spectral elements are written. Some results of computations are given for model problems that have analytical solutions. The results show the better accuracy of SEM in comparison with FEM for the same meshes.


Sign in / Sign up

Export Citation Format

Share Document