Optimal, globally constraint-preserving, DG(TD)2 schemes for computational electrodynamics based on two-derivative Runge-Kutta timestepping and multidimensional generalized Riemann problem solvers – A von Neumann stability analysis

2020 ◽  
Vol 408 ◽  
pp. 109238 ◽  
Author(s):  
Roger Käppeli ◽  
Dinshaw S. Balsara ◽  
Praveen Chandrashekar ◽  
Arijit Hazra
Author(s):  
Y Alkhimenkov ◽  
L Khakimova ◽  
Y Y Podladchikov

Summary The efficient and accurate numerical modeling of Biot’s equations of poroelasticity requires the knowledge of the exact stability conditions for a given set of input parameters. Up to now, a numerical stability analysis of the discretized elastodynamic Biot’s equations has been performed only for a few numerical schemes. We perform the von Neumann stability analysis of the discretized Biot’s equations. We use an explicit scheme for the wave propagation and different implicit and explicit schemes for Darcy’s flux. We derive the exact stability conditions for all the considered schemes. The obtained stability conditions for the discretized Biot’s equations were verified numerically in one-, two- and three-dimensions. Additionally, we present von Neumann stability analysis of the discretized linear damped wave equation considering different implicit and explicit schemes. We provide both the Matlab and symbolic Maple routines for the full reproducibility of the presented results. The routines can be used to obtain exact stability conditions for any given set of input material and numerical parameters.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
M. A. Banaja ◽  
H. O. Bakodah

The equal width (EW) equation governs nonlinear wave phenomena like waves in shallow water. Numerical solution of the (EW) equation is obtained by using the method of lines (MOL) based on Runge-Kutta integration. Using von Neumann stability analysis, the scheme is found to be unconditionally stable. Solitary wave motion and interaction of two solitary waves are studied using the proposed method. The three invariants of the motion are evaluated to determine the conservation properties of the generated scheme. Accuracy of the proposed method is discussed by computing theL2andL∞error norms. The results are found in good agreement with exact solution.


Sign in / Sign up

Export Citation Format

Share Document