scholarly journals A stochastic kinetic scheme for multi-scale plasma transport with uncertainty quantification

2021 ◽  
Vol 432 ◽  
pp. 110139
Author(s):  
Tianbai Xiao ◽  
Martin Frank
Author(s):  
Zhuo Wang ◽  
Chen Jiang ◽  
Mark F. Horstemeyer ◽  
Zhen Hu ◽  
Lei Chen

Abstract One of significant challenges in the metallic additive manufacturing (AM) is the presence of many sources of uncertainty that leads to variability in microstructure and properties of AM parts. Consequently, it is extremely challenging to repeat the manufacturing of a high-quality product in mass production. A trial-and-error approach usually needs to be employed to attain a product with high quality. To achieve a comprehensive uncertainty quantification (UQ) study of AM processes, we present a physics-informed data-driven modeling framework, in which multi-level data-driven surrogate models are constructed based on extensive computational data obtained by multi-scale multi-physical AM models. It starts with computationally inexpensive metamodels, followed by experimental calibration of as-built metamodels and then efficient UQ analysis of AM process. For illustration purpose, this study specifically uses the thermal level of AM process as an example, by choosing the temperature field and melt pool as quantity of interest. We have clearly showed the surrogate modeling in the presence of high-dimensional response (e.g. temperature field) during AM process, and illustrated the parameter calibration and model correction of an as-built surrogate model for reliable uncertainty quantification. The experimental calibration especially takes advantage of the high-quality AM benchmark data from National Institute of Standards and Technology (NIST). This study demonstrates the potential of the proposed data-driven UQ framework for efficiently investigating uncertainty propagation from process parameters to material microstructures, and then to macro-level mechanical properties through a combination of advanced AM multi-physics simulations, data-driven surrogate modeling and experimental calibration.


2021 ◽  
Vol 2 (1) ◽  
pp. 44-56
Author(s):  
Maria Avramova ◽  
Agustin Abarca ◽  
Jason Hou ◽  
Kostadin Ivanov

This paper provides a review of current and upcoming innovations in development, validation, and uncertainty quantification of nuclear reactor multi-physics simulation methods. Multi-physics modelling and simulations (M&S) provide more accurate and realistic predictions of the nuclear reactors behavior including local safety parameters. Multi-physics M&S tools can be subdivided in two groups: traditional multi-physics M&S on assembly/channel spatial scale (currently used in industry and regulation), and novel high-fidelity multi-physics M&S on pin (sub-pin)/sub-channel spatial scale. The current trends in reactor design and safety analysis are towards further development, verification, and validation of multi-physics multi-scale M&S combined with uncertainty quantification and propagation. Approaches currently applied for validation of the traditional multi-physics M&S are summarized and illustrated using established Nuclear Energy Agency/Organization for Economic Cooperation and Development (NEA/OECD) multi-physics benchmarks. Novel high-fidelity multi-physics M&S allow for insights crucial to resolve industry challenge and high impact problems previously impossible with the traditional tools. Challenges in validation of novel multi-physics M&S are discussed along with the needs for developing validation benchmarks based on experimental data. Due to their complexity, the novel multi-physics codes are still computationally expensive for routine applications. This fact motivates the use of high-fidelity novel models and codes to inform the low-fidelity traditional models and codes, leading to improved traditional multi-physics M&S. The uncertainty quantification and propagation across different scales (multi-scale) and multi-physics phenomena are demonstrated using the OECD/NEA Light Water Reactor Uncertainty Analysis in Modelling benchmark framework. Finally, the increasing role of data science and analytics techniques in development and validation of multi-physics M&S is summarized.


Author(s):  
D. Ye ◽  
L. Veen ◽  
A. Nikishova ◽  
J. Lakhlili ◽  
W. Edeling ◽  
...  

Uncertainty quantification (UQ) is a key component when using computational models that involve uncertainties, e.g. in decision-making scenarios. In this work, we present uncertainty quantification patterns (UQPs) that are designed to support the analysis of uncertainty in coupled multi-scale and multi-domain applications. UQPs provide the basic building blocks to create tailored UQ for multiscale models. The UQPs are implemented as generic templates, which can then be customized and aggregated to create a dedicated UQ procedure for multiscale applications. We present the implementation of the UQPs with multiscale coupling toolkit Multiscale Coupling Library and Environment 3. Potential speed-up for UQPs has been derived as well. As a proof of concept, two examples of multiscale applications using UQPs are presented. This article is part of the theme issue ‘Reliability and reproducibility in computational science: implementing verification, validation and uncertainty quantification in silico ’.


Author(s):  
Pinar Acar

Abstract The present study addresses the integration of an analytical uncertainty quantification approach to multi-scale modeling of single-walled carbon nanotube (SWNT)-epoxy nanocomposites. The main highlight is the investigation of the stochasticity of nanotube orientations, and its effects on the homogenized properties. Even though the properties of SWNT-epoxy nanocomposites are well-studied in the literature, the natural stochasticity that arises from the nanotube orientations has not been observed. To understand the effects of the variability in SWNT orientations to material properties of interest, an analytical uncertainty quantification algorithm is utilized. The analytical scheme computes the propagation of the orientational uncertainty to the volume-averaged properties with a linear solution and uses the transformation of random variables principle to obtain the variations in non-linear properties. The results indicate that the uncertainty propagation affects the macro-scale properties, including stiffness, thermal expansion, thermal conductivity, and natural frequencies.


2016 ◽  
Vol 140 ◽  
pp. 289-296 ◽  
Author(s):  
Yaxin Zhen ◽  
Min Xiao ◽  
Guoxi Ni

Sign in / Sign up

Export Citation Format

Share Document