crack evolution
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 88)

H-INDEX

18
(FIVE YEARS 5)

2022 ◽  
Vol 12 (2) ◽  
pp. 860
Author(s):  
Qiao Chen ◽  
Fenglin Xu ◽  
Pengcheng Su ◽  
Honglin Zhu ◽  
Yifang Zhang ◽  
...  

Meso-crack evolution mechanism of shale is a key factor affecting the mechanical properties of shale. In order to explore evolution laws of cracks in shale during loading, a meso-crack monitoring system, loading test equipment and an automatic ultrasonic data acquisition system were set up. On this basis, a set of experimental apparatus simultaneous monitoring multi-parameters of shale micro-crack was designed, and destruction experiments of shale samples with different bedding angles were carried out to find out evolution characteristics of cracks. The results show the following: (1) The designed apparatus can monitor ultrasonic, mechanical and video information simultaneously of crack evolution in the entire process of shale destruction under load to provide information for analyzing acoustic and mechanical characteristic responses of crack propagation at key time nodes. (2) With an increase in load, shale will undergo four stages of destruction: crack initiation, propagation, penetration and overall failure. In the course of these stages, acoustic characteristics and mechanical characteristics are in good agreement, which proves the validity of predicting rock mechanical parameters with acoustic data. (3) During the loading process of shale, the main amplitude of acoustic wave is more sensitive than mechanical parameters to the change of rock cracks. Research results have important theoretical reference value for evaluating wall stability of shale gas horizontal well with ultrasonic data.


Synlett ◽  
2022 ◽  
Author(s):  
Qing Li ◽  
Qi Wang ◽  
Yuan Yuan ◽  
Yulan Chen

Quantitative and real-time characterization of mechanically induced bond scission events taken place in polymeric hydrogels is essential to uncover their fracture mechanics. Herein, a class of mechanochemiluminescent swelling hydrogels have been synthesized through a facile micellar copolymerization method using chemiluminescent bis(adamantyl)-1,2-dioxetane (Ad) as a crosslinker. This design and synthetic strategy ensure intense mechanochemiluminescence from Ad located in a hydrophobic network inside micelles. Moreover, the mechanochemiluminescent colors can be tailored from blue to red by mixing variant acceptors. Taking advantages of the transient nature of dioxetane chemiluminescence, the damage distribution and crack evolution of the hydrogels can be visualized and analyzed with high spatial and temporal resolution. The results demonstrate the strengths of the Ad mechanophore and micellar copolymerization method in the study of damage evolution and fracture mechanism of swelling hydrogels.


Author(s):  
Xiangnan Wang ◽  
Jialin Yu ◽  
Quanming Li ◽  
Yuzhen Yu ◽  
He Lv

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Juntao Chen ◽  
Yi Zhang ◽  
Kai Ma ◽  
Daozeng Tang ◽  
Hao Li ◽  
...  

To further explore the crack evolution of floor rock mass, the mechanism of fault activation, and water inrush, this paper analyzes the crack initiation and propagation mechanism of floor rock mass and obtains the initiation criteria of shear cracks, layered cracks, and vertical tension cracks. With the help of simulation software, the process of fault activation and crack evolution under different fault drop and dip angles was studied. The results show that the sequence of crack presented in the mining rock mass is vertical tension cracks, shear cracks, and layered cracks. The initiation and propagation of the shear cracks at the coal wall promote the fault activation, which tends to be easily caused at a specific inclination angle between 45° and 75°. The fault drop has no obvious impact on the evolution of floor rock cracks and will not induce fault activation. However, the increase of the drop will cause the roof to collapse, reducing the possibility of water inrush disaster. Research shows that measures such as adopting improved mining technology, reducing mining disturbance, increasing coal pillar size, and grouting before mining as reinforcement and artificial forced roof can effectively prevent water inrush disasters caused by deep mining due to fault activation.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7234
Author(s):  
Suran Wang ◽  
Youliang Chen ◽  
Min Xiong ◽  
Xi Du ◽  
Guanlin Liu ◽  
...  

In the study of rock mechanics, the variation of rock mechanical characteristics in high-temperature environments is always a major issue. The discrete element method and Voronoi modeling method were used to study the mechanical characteristics and crack evolution of granite specimens subjected to the high temperature and uniaxial compression test in order to study the internal crack evolution process of granite under the influence of high temperatures. Meanwhile, dependable findings were acquired when compared to experimental outcomes. A modified failure criterion was devised, and a Fish function was built to examine the evolution behavior of tensile and shear cracks during uniaxial compression, in order to better understand the evolution process of micro-cracks in granite specimens. Shear contacts occurred first, and the number of shear cracks reached its maximum value earliest, according to the findings. The number of tensile contacts then rapidly grew, whereas the number of shear cracks steadily declined. Furthermore, it was found that when temperature rises, the number of early tensile cracks grows. This study develops a fracture prediction system for rock engineering in high-temperature conditions.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6958
Author(s):  
Tianyu Zhang ◽  
Jian Wang ◽  
Zhizhou Pan ◽  
Qing Tao

The carburizing–quenching–tempering process is generally conducted on heavy-duty gear in order to obtain favorable comprehensive mechanical performance. Different mechanical properties could be produced by carbon partition and precipitation. In this study, the carburizing–quenching–tempering process was carried out on low-carbon alloy steel in order to investigate the influence of microstructure evolution and precipitate transition on mechanical behavior and wear resistance under different carburizing/tempering durations. Favorable comprehensive mechanical property and wear resistance could be obtained in favor of long durations of carburizing/tempering. A fatigue-wear model was proposed to describe fatigue crack evolution and damage mechanism on the basis of wear features.


2021 ◽  
pp. 1168-1177
Author(s):  
Zuoli Li ◽  
Qin Sun ◽  
Baoping Wang ◽  
Xiangzhen Kong

Sign in / Sign up

Export Citation Format

Share Document