Effects of argon flow on impurities transport in a directional solidification furnace for silicon solar cells

2011 ◽  
Vol 318 (1) ◽  
pp. 304-312 ◽  
Author(s):  
Zaoyang Li ◽  
Lijun Liu ◽  
Wencheng Ma ◽  
Koichi Kakimoto
Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 421
Author(s):  
Xiaofang Qi ◽  
Yiwen Xue ◽  
Wenjia Su ◽  
Wencheng Ma ◽  
Lijun Liu

Transient global simulations were carried out to investigate the effect of argon flow on oxygen and carbon coupled transport in an industrial directional solidification furnace for quasi-single crystalline silicon ingots. Global calculation of impurity transport in the argon gas and silicon melt was based on a fully coupled calculation of the thermal and flow fields. Numerical results show that the argon flow rate affects the flow intensity along the melt–gas surface, but has no significant effect on the flow patterns of silicon melt and argon gas above the melt–gas surface. It was found that the evaporation flux of SiO along the melt–gas surface decreases with the increasing argon flow rate during the solidification process. However, the net flux of oxygen atoms (SiO evaporation flux minus CO dissolution flux) away from the melt–gas surface increases with the increasing argon flow rate, leading to a decrease in the oxygen concentration in the grown ingot. The carbon concentration in the grown ingot shows an exponential decrease with the increase of the argon flow rate, owing to the fact that the dissolution flux of CO significantly decreases with the increasing argon flow rate. The numerical results agree well with the experimental measurements.


1983 ◽  
Vol 9 (3) ◽  
pp. 337-345 ◽  
Author(s):  
Takeshi Saito ◽  
Akio Shimura ◽  
Shoji Ichikawa

2003 ◽  
Vol 762 ◽  
Author(s):  
Guozhen Yuea ◽  
Baojie Yan ◽  
Jeffrey Yang ◽  
Kenneth Lord ◽  
Subhendu Guha

AbstractWe have observed a significant light-induced increase in the open-circuit voltage (Voc) of mixed-phase hydrogenated silicon solar cells. In this study, we investigate the kinetics of the light-induced effects. The results show that the cells with different initial Voc have different kinetic behavior. For the cells with a low initial Voc (less than 0.8 V), the increase in Voc is slow and does not saturate for light-soaking time of up to 16 hours. For the cells with medium initial Voc (0.8 ∼ 0.95 V), the Voc increases rapidly and then saturates. Cells with high initial Voc (0.95 ∼ 0.98 V) show an initial increase in Voc, followed bya Voc decrease. All light-soaked cells exhibit a degradation in fill factor. The temperature dependence of the kinetics shows that light soaking at high temperatures causes Voc increase to saturate faster than at low temperatures. The observed results can be explained by our recently proposed two-diode equivalent-circuit model for mixed-phase solar cells.


2008 ◽  
Vol 67 (7) ◽  
pp. 645-653
Author(s):  
L. P. Shuba ◽  
M. V. Kirichenko ◽  
V. R. Kopach ◽  
V. A. Antonova ◽  
A. M. Listratenko

Sign in / Sign up

Export Citation Format

Share Document