Kinetics of Light-Induced Effects in Mixed-Phase Hydrogenated Silicon Solar Cells

2003 ◽  
Vol 762 ◽  
Author(s):  
Guozhen Yuea ◽  
Baojie Yan ◽  
Jeffrey Yang ◽  
Kenneth Lord ◽  
Subhendu Guha

AbstractWe have observed a significant light-induced increase in the open-circuit voltage (Voc) of mixed-phase hydrogenated silicon solar cells. In this study, we investigate the kinetics of the light-induced effects. The results show that the cells with different initial Voc have different kinetic behavior. For the cells with a low initial Voc (less than 0.8 V), the increase in Voc is slow and does not saturate for light-soaking time of up to 16 hours. For the cells with medium initial Voc (0.8 ∼ 0.95 V), the Voc increases rapidly and then saturates. Cells with high initial Voc (0.95 ∼ 0.98 V) show an initial increase in Voc, followed bya Voc decrease. All light-soaked cells exhibit a degradation in fill factor. The temperature dependence of the kinetics shows that light soaking at high temperatures causes Voc increase to saturate faster than at low temperatures. The observed results can be explained by our recently proposed two-diode equivalent-circuit model for mixed-phase solar cells.

2003 ◽  
Vol 762 ◽  
Author(s):  
Jessica M. Owens ◽  
Daxing Han ◽  
Baojie Yan ◽  
Jeffrey Yang ◽  
Kenneth Lord ◽  
...  

AbstractThe open-circuit voltage (Voc) of mixed-phase hydrogenated silicon solar cells has been found to increase after light soaking. In this study, we use micro-Raman to investigate the heterogeneous structure of solar cells in the amorphous-to-nanocrystalline transition region. For a cell with Voc = 0.981 V, Raman spectra show a typical broad Gaussian lineshape around 480 cm-1, a signature of typical amorphous material. A cell with Voc = 0.674 V displays a sharp Lorentzian peak around 516 cm-1, indicative of nanocrystallinity. A cell with Voc = 0.767 V was systematically scanned for 20 different positions in 500 μm increments. Most spectra show a typical Gaussian lineshape around 480 cm-1, several spectra reveal a hint of a nanocrystalline shoulder around 512 cm-1, and one spectrum exhibits a distinct nanocrystalline peak. We conclude that the nanocrystallite distribution in the mixed-phase material is very non-uniform even within a mm dot. This result provides direct evidence supporting a recently proposed two-diode equivalent-circuit model to explain the light-induced effect.


2007 ◽  
Vol 989 ◽  
Author(s):  
Chunsheng Jiang ◽  
B. Yan ◽  
H. R. Moutinho ◽  
M. M. Al-Jassim ◽  
J. Yang ◽  
...  

AbstractWe report on the measurement of local current flow in hydrogenated amorphous and nanocrystalline mixed-phase n-i-p silicon solar cells in the initial, light-soaked, and annealed states using conductive atomic force microscopy (C-AFM). The C-AFM measurement shows that the nanometer-size grains aggregate, and the local current densities in the nanocrystalline aggregation areas decreased significantly after light soaking and recovered to values similar to the initial state after annealing at a high temperature in a vacuum. This result supports the model of two parallel-connected diodes for explaining the light-induced open-circuit voltage increase in the mixed-phase solar cells.


2007 ◽  
Vol 101 (11) ◽  
pp. 114301 ◽  
Author(s):  
J. M. Pearce ◽  
N. Podraza ◽  
R. W. Collins ◽  
M. M. Al-Jassim ◽  
K. M. Jones ◽  
...  

1998 ◽  
Vol 507 ◽  
Author(s):  
J. Meier ◽  
H. Keppner ◽  
S. Dubail ◽  
U. Kroll ◽  
P. Torres ◽  
...  

ABSTRACTHigher open circuit voltages of the microcrystalline silicon bottom cell have a direct impact on the efficiency of the micromorph (μc-Si:H/a-Si:H) tandem cell. In this paper it is shown that open circuit voltages over 500 mV can be achieved leading to gc-Si:H cell efficiencies of 8.5 %. The behaviour of such cells is characterised both by the illuminated and the dark I-V characteristics in function of cell temperature. Microcrystalline cells with Voc-values higher than 500 mV and micromorph tandems possess in general a lower value of the temperature coefficient of the fill factor and thus of the efficiency, when compared to c-Si. Temperature-dependent dark I-V measurements suggest that the dominant recombination mechanism in lgc-Si:H cells is different from that prevailing in a-Si:H solar cells.


2003 ◽  
Vol 762 ◽  
Author(s):  
Jianhua Zhu ◽  
Vikram L. Dalal

AbstractWe report on the growth and properties of microcrystalline Si:H and (Si,Ge):H solar cells on stainless steel substrates. The solar cells were grown using a remote, low pressure ECR plasma system. In order to crystallize (Si,Ge), much higher hydrogen dilution (∼40:1) had to be used compared to the case for mc-Si:H, where a dilution of 10:1 was adequate for crystallization. The solar cell structure was of the p+nn+ type, with light entering the p+ layer. It was found that it was advantageous to use a thin a-Si:H buffer layer at the back of the cells in order to reduce shunt density and improve the performance of the cells. A graded gap buffer layer was used at the p+n interface so as to improve the open-circuit voltage and fill factor. The open circuit voltage and fill factor decreased as the Ge content increased. Quantum efficiency measurements indicated that the device was indeed microcrystalline and followed the absorption characteristics of crystalline ( Si,Ge). As the Ge content increased, quantum efficiency in the infrared increased. X-ray measurements of films indicated grain sizes of ∼ 10nm. EDAX measurements were used to measure the Ge content in the films and devices. Capacitance measurements at low frequencies ( ~100 Hz and 1 kHz) indicated that the base layer was indeed behaving as a crystalline material, with classical C(V) curves. The defect density varied between 1x1016 to 2x1017/cm3, with higher defects indicated as the Ge concentration increased.


2015 ◽  
Vol 5 (6) ◽  
pp. 1757-1761 ◽  
Author(s):  
Daniel Amkreutz ◽  
William D. Barker ◽  
Sven Kuhnapfel ◽  
Paul Sonntag ◽  
Onno Gabriel ◽  
...  

2013 ◽  
Vol 665 ◽  
pp. 330-335 ◽  
Author(s):  
Ripal Parmar ◽  
Dipak Sahay ◽  
R.J. Pathak ◽  
R.K. Shah

The solar cells have been used as most promising device to convert light energy into electrical energy. In this paper authors have attempted to fabricate Photoelectrochemical solar cell with semiconductor electrode using TMDCs. The Photoelectrochemical solar cells are the solar cells which convert the solar energy into electrical energy. The photoelectrochemical cells are clean and inexhaustible sources of energy. The photoelectrochemical solar cells are fabricated using WSe2crystal and electrolyte solution of 0.025M I2, 0.5M NaI, 0.5M Na2SO4. Here the WSe2crystals were grown by direct vapour transport technique. In our investigations the solar cell parameters like short circuit current (Isc) and Open circuit voltage (Voc) were measured and from that Fill factor (F.F.) and photoconversion efficiency (η) are investigated. The results obtained shows that the value of efficiency and fill factor of solar cell varies with the illumination intensities.


2015 ◽  
Vol 212 (4) ◽  
pp. 840-845 ◽  
Author(s):  
Simon Hänni ◽  
Mathieu Boccard ◽  
Grégory Bugnon ◽  
Matthieu Despeisse ◽  
Jan-Willem Schüttauf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document