Application of two-dimensional cross-correlation spectroscopy to analyse infrared (MIR and NIR) spectra recorded during bread dough mixing

2008 ◽  
Vol 48 (3) ◽  
pp. 678-685 ◽  
Author(s):  
A. Aït Kaddour ◽  
M. Mondet ◽  
B. Cuq
1996 ◽  
Vol 50 (4) ◽  
pp. 467-475 ◽  
Author(s):  
William Fred McClure ◽  
Hisashi Maeda ◽  
Jian Dong ◽  
Yongliang Liu ◽  
Yukihiro Ozaki

Two-dimensional (2D) correlation of near-infrared (NIR) and Raman spectra was carried out for mixtures of protein (lysozyme) and sugar (sucrose) to investigate the potential of this technique for qualitative NIR spectral interpretation. Cross-correlation by least-squares was employed to assess changes in both sets of spectra which result from changes in the set of sample spectra. Fourier transform (FT) NIR and NIR-excited FT-Raman spectra were measured for each of the samples under the same conditions, and point-for-point 2D cross-correlation was calculated. In this technique, each wavenumber in the NIR region gives rise to a sliced Raman spectrum where each data point is correlated to the NIR wavenumber, while each wavenumber in a Raman spectrum provides a sliced NIR spectrum in which each data point is correlated to the Raman wavenumber. For example, choosing NIR wavenumbers 7272, 6960, 6324, and 4812 cm−1 gives sliced Raman spectra with features attributable to sucrose, while choosing NIR wavenumbers at 8424, 5148, 5052, and 4584 cm−1 provides slices with distinct lysozyme features. Therefore, the technique permits the determination of the most probable origin of NIR signals by connecting NIR spectra, which have rather broad and overlapped bands, to Raman spectra consisting of sharp and clearly separated bands. It is also possible to produce sliced NIR spectra of lysozyme and sucrose by properly selecting wavenumbers in their Raman spectra. The NIR slices explain which wavenumbers in the NIR region are correlated to lysozyme or to sucrose. Thus, 2D correlation spectroscopy helps explain the reasons why certain wavenumbers are selected in a chemometric calibration model.


2021 ◽  
Vol 358 ◽  
pp. 129916
Author(s):  
Eloïse Lancelot ◽  
Joran Fontaine ◽  
Joëlle Grua-Priol ◽  
Ali Assaf ◽  
Gérald Thouand ◽  
...  

2021 ◽  
Vol 14 (8) ◽  
pp. 757
Author(s):  
Iga Jakobowska ◽  
Frank Becker ◽  
Stefano Minguzzi ◽  
Kerrin Hansen ◽  
Björn Henke ◽  
...  

Blocking lactate export in the parasitic protozoan Plasmodium falciparum is a novel strategy to combat malaria. We discovered small drug-like molecules that inhibit the sole plasmodial lactate transporter, PfFNT, and kill parasites in culture. The pentafluoro-3-hydroxy-pent-2-en-1-one BH296 blocks PfFNT with nanomolar efficiency but an in vitro selected PfFNT G107S mutation confers resistance against the drug. We circumvented the mutation by introducing a nitrogen atom as a hydrogen bond acceptor site into the aromatic ring of the inhibitor yielding BH267.meta. The current PfFNT inhibitor efficiency values were derived from yeast-based lactate transport assays, yet direct affinity and binding kinetics data are missing. Here, we expressed PfFNT fused with a green fluorescent protein in human embryonic kidney cells and generated fluorescent derivatives of the inhibitors, BH296 and BH267.meta. Using confocal imaging, we confirmed the location of the proposed binding site at the cytosolic transporter entry site. We then carried out fluorescence cross-correlation spectroscopy measurements to assign true Ki-values, as well as kon and koff rate constants for inhibitor binding to PfFNT wildtype and the G107S mutant. BH296 and BH267.meta gave similar rate constants for binding to PfFNT wildtype. BH296 was inactive on PfFNT G107S, whereas BH267.meta bound the mutant protein albeit with weaker affinity than to PfFNT wildtype. Eventually, using a set of PfFNT inhibitor compounds, we found a robust correlation of the results from the biophysical FCCS binding assay to inhibition data of the functional transport assay.


Sign in / Sign up

Export Citation Format

Share Document