Behaviour of thin-walled curved steel plates under generalised in-plane stresses: A review

2018 ◽  
Vol 140 ◽  
pp. 191-207 ◽  
Author(s):  
J.P. Martins ◽  
F. Ljubinkovic ◽  
L. Simões da Silva ◽  
H. Gervásio
Author(s):  
Takuji Kumano ◽  
Kunimoto Sugiura ◽  
Takashi Yamaguchi ◽  
Eiichi Watanabe ◽  
Yasuo Suzuki

Author(s):  
Qiyang Zuo ◽  
Kai He ◽  
Xiaobing Dang ◽  
Wei Feng ◽  
Ruxu Du

Bending complex curved steel plates for constructing ship hull has long been a challenge in shipbuilding industry. This paper presents a novel incremental bending process to obtain complicated curved steel plates by a series of sequential and layered punches. Taking advantage of this process, the blank plate that is fixed and held by a flexible supporting system can incrementally be bent into the target shape by a press tool along a planned tool path step by step and layer by layer. Acting as a “lower die,” the flexible supporting system can provide flexible and multifunctional supports for the work piece during the forming process, whose four general motion modes are demonstrated in this paper. Meanwhile, the procedures of tool path planning and forming layering are also explained in detail. In addition, aiming at different motion modes of the flexible supporting system, two springback compensation methods are given. Furthermore, according to the forming principle presented in this paper, an original incremental prototype equipment was designed and manufactured, which is mainly composed of a three-axis computer numerical control (CNC) machine, a flexible supporting system, and a three-dimensional (3D) scanning feedback system. A series of forming experiments focusing on a gradual curvature shape were carried out using this prototype to investigate the feasibility and validity of this forming process.


Structures ◽  
2020 ◽  
Vol 24 ◽  
pp. 791-803
Author(s):  
Marzieh Obeydi ◽  
Mehran Zeynalian ◽  
Maryam Daei

2021 ◽  
Vol 11 (1) ◽  
pp. 1034-1047
Author(s):  
Aditya Rio Prabowo ◽  
Tuswan Tuswan ◽  
Dandun Mahesa Prabowoputra ◽  
Ridwan Ridwan

Abstract Thin-walled structures, which generally consist of unstiffened and stiffened plates, are widely used in engineering as one of the core features of any product or construction. Due to environmental conditions and working operation, the components of the structure unavoidably become subject to various types of loading. Deformation patterns and overall behaviour are expected to be varied, as different materials are considered in the structures. In this situation, assessments are required to quantify the responses and determine the relationships between the structural behaviour and structural parameters. In this work, we attempt to obtain the behaviour data of unstiffened and stiffened plates as components of thin-walled structures. The material class – i.e. low- and medium-carbon steels – and loading parameters (i.e. type and angle) are taken as the main inputs in the finite element analysis. A geometrical design is adopted based on the side hull structure of a medium-sized tanker, for which two plate types, unstiffened and stiffened, are used. The results indicate that increasing the loading angle reduces the force experienced by the plate, while the greater the loading direction angle is, the greater the total displacement value will be. In terms of the plate design, the stiffener is observed to reduce the force expansion during the loading of the stiffened plate.


2011 ◽  
Vol 94-96 ◽  
pp. 962-969
Author(s):  
Hai Chao Wang ◽  
Xi Quan Xu ◽  
Li Jun Zhou ◽  
Hong Ying Zhang ◽  
Feng Lian Yang

Based on the compression characteristics of the concrete-filled thin-walled square steel tube short columns, the U-shaped tie bars are designed in this paper. The U-shaped tie bars and steel pipe walls are connected with each other in T-shape in order to enhance the local stability of the walls under pressure. According to the concrete strength C30/C35/C40 and the thickness of the steel plates 1.25mm/1.75mm/2.5mm,42 short-column specimens are made, and the size of all specimens is 200mm×200mm×690mm.The bearing capacity test is done by the 500-ton electro-hydraulic serve testing machine. The strain of U-shaped tie bar and thin-walled steel are tested, and then the whole curve of compression process is obtained. The results show that the U-shaped tie bar has a very good role in bonding, and has good effects on improving buckling mode and the ductility of the components significantly. Concrete-filled thin-walled square steel tube short column fixed U-shaped tie bar has advantages on stronger post- deformability and more applicable to configuration compared with existing research achievements, and can provide a reference for engineering design.


Sign in / Sign up

Export Citation Format

Share Document