Analysis of the behaviour of cover-plate stainless steel bolted connections

2022 ◽  
Vol 190 ◽  
pp. 107125
Author(s):  
Abdessamade Mendli ◽  
Djamel El Ddine Kerdal ◽  
Abdelhamid Bouchair ◽  
Anis Abidelah
2013 ◽  
Vol 664 ◽  
pp. 976-979
Author(s):  
Tae Soo Kim ◽  
Min Seung Kim

Based on the existing test results of single shear bolted connection fabricated with cold-formed ferritic stainless steel, in this study, the experiment for double shear bolted connections with bolt arrangements(1×2, 2×2) and end distance parallel to the loading direction as main variables has been performed. Specimens were planed with a constant dimension of edge distance perpendicular to the loading direction, bolt diameter, pitch and gauge. Ultimate strength and fracture mode obtained from test results were compared with those predicted by current American and Japan design codes such as AISI and AIJ.


2013 ◽  
Vol 658 ◽  
pp. 350-353
Author(s):  
Tae Soo Kim ◽  
Min Seung Kim ◽  
Sung Woo Shin

Since stainless steel has significant characteristics such as its superior corrosion resistance, durability, aesthetic appeal etc., it has been utilized as structural members in buildings. Recently, ultimate behaviors and curling influence in austenitic stainless steel single shear bolted connections with thin-walled plane plates have been investigated by T.S. Kim. In this paper, finite element analysis (FEA) has been conducted based on the existing test results of angle bolted connections in fabricated with austenitic stainless steel. The validation of the numerical analysis prediction was verified through the comparison of test results for fracture mode, ultimate strength and curling occurrence. Curling (out-of- plane deformation) also observed in the connections with a long end distance. The curling caused the ultimate strength reduction and the ultimate strength reduction ratios (varied from 12% to 25%) caused by curling have been estimated quantitatively through the comparison of FEA results of FE models with free edge and restrained curling.


Sign in / Sign up

Export Citation Format

Share Document