scholarly journals Combinatorial proof of Selberg's integral formula

2022 ◽  
Vol 185 ◽  
pp. 105513
Author(s):  
Alexander M. Haupt
1982 ◽  
Vol 43 (2) ◽  
pp. 189-195 ◽  
Author(s):  
Claude Esling ◽  
Jacques Muller ◽  
Hans-Joachim Bunge
Keyword(s):  

1995 ◽  
Vol 10 (08) ◽  
pp. 1219-1236 ◽  
Author(s):  
S. KHARCHEV ◽  
A. MARSHAKOV

We study the role of integral representations in the description of nonperturbative solutions to c ≤ 1 string theory. A generic solution is determined by two functions, W(x) and Q(x), which behave at infinity like xp and xq respectively. The integral formula for arbitrary (p, q) models is derived, which explicitly realizes a duality transformation between (p, q) and (q, p) 2D gravity solutions. We also discuss the exact solutions to the string equation and reduction condition and present several explicit examples.


2019 ◽  
Vol 9 (1) ◽  
pp. 127-132
Author(s):  
D. Zhao ◽  
Z. Gong ◽  
J. Feng

Abstract For the modelling and determination of the Earth’s external gravity potential as well as its second-order radial derivatives in the space near sea surface, the surface layer integral method was discussed in the paper. The reasons for the applicability of the method over sea surface were discussed. From the original integral formula of disturbing potential based on the surface layer method, the expression of the radial component of the gravity gradient tensor was derived. Furthermore, an identity relation was introduced to modify the formula in order to reduce the singularity problem. Numerical experiments carried out over the marine area of China show that, the modi-fied surface layer integral method effectively improves the accuracy and reliability of the calculation of the second-order radial gradient component of the disturbing potential near sea surface.


1970 ◽  
Vol 38 ◽  
pp. 1-12 ◽  
Author(s):  
Eiichi Sakai

In the theory of functions of several complex variables, the problem about the continuation of meromorphic functions has not been much investigated for a long time in spite of its importance except the deeper result of the continuity theorem due to E. E. Levi [4] and H. Kneser [3], The difficulty of its investigation is based on the following reasons: we can not use the tools of not only Cauchy’s integral formula but also the power series and there are indetermination points for the meromorphic function of many variables different from one variable. Therefore we shall also follow the Levi and Kneser’s method and seek for the aspect of meromorphic completion of a Reinhardt domain in Cn.


2015 ◽  
Vol 40 (2) ◽  
pp. 273-281 ◽  
Author(s):  
Piotr Kiełczyński ◽  
Marek Szalewski ◽  
Andrzej Balcerzak ◽  
Krzysztof Wieja

AbstractThis paper presents a theoretical study of the propagation behaviour of surface Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in acoustics. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). Two Love wave waveguide structures are analyzed: 1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and 2) a semi-infinite nonhomogeneous elastic half-space. The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved 1) analytically in the case of the step profile, exponential profile and 1cosh2type profile, and 2) numerically in the case of the power type profiles (i.e. linear and quadratic), by using two numerical methods: i.e. a) Finite Difference Method, and b) Haskell-Thompson Transfer Matrix Method.The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The results obtained in this paper can give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials.


Sign in / Sign up

Export Citation Format

Share Document