Umbilical Cord Derived Sub-Epithelial Cells Improve Heart Function Post Myocardial Infarction

Cytotherapy ◽  
2016 ◽  
Vol 18 (6) ◽  
pp. S81-S82
Author(s):  
C. Bartlett ◽  
D Atkinson ◽  
R. Walker ◽  
F. Silva ◽  
A. Patel
2019 ◽  
Vol 103 ◽  
pp. 109751 ◽  
Author(s):  
Eimear B. Dolan ◽  
Björn Hofmann ◽  
M. Hamman de Vaal ◽  
Gabriella Bellavia ◽  
Stefania Straino ◽  
...  

2017 ◽  
Vol 06 (01) ◽  
Author(s):  
Eric J Tsang ◽  
Maria C Jordan ◽  
Kenneth P Roos ◽  
Jessica M Gluck ◽  
Medet Jumabay ◽  
...  

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Keerat Kaur ◽  
Asharee Mahmoud ◽  
Hanna Girard ◽  
Ann Anu Kurian ◽  
Magdalena Zak ◽  
...  

Introduction: Despite various clinical modalities, ischemic heart disease remains among the leading causes of mortality and morbidity worldwide. The elemental problem is the immense loss of cardiomyocytes (CMs) post-myocardial infarction (MI). Reprogramming non- cardiomyocytes (non-CMs) into cardiomyocyte (CM)-like cells in vivo is a promising strategy for cardiac regeneration: however, the traditional viral delivery method hampered its application into clinical settings due to low and erratic transduction efficiency. Methods: We used a modified mRNA (modRNA) gene delivery platform to deliver different stoichiometry of cardiac-reprogramming genes (Gata4, Mef2c, Tbx5 and Hand2) together with reprogramming helper genes (Dominant Negative (DN)-TGFβ, DN- Wnt8a and Acid ceramidase (AC)), named 7G, to induce direct cardiac reprogramming post myocardial infarction (MI). Results: Here, we identified 7G modRNA cocktail as an important regulator ofthe cardiac reprogramming. Cardiac transfection with 7G modRNA doubled cardiac reprogramming efficiency (57%) in comparison to Gata4, Mef2C and Tbx5 (GMT) alone (28%) in vitro . By inducing MI in our lineage tracing model, we showed that one-time delivery of the 7G-modRNA cocktail reprogrammed ~25% of the non-CMs in the scar area to CM- like cells. Furthermore, 7G modRNA treated mice showed significantly improved cardiac function, longer survival, reduced scar size and greater capillary density than control mice 28 days post-MI. We attributed the improvement in heart function post modRNA delivery of 7G or 7G with increased Hand2 ratio (7G-GMT Hx2) to significant upregulation of 15 key angiogenic factors without any signs of angioma or edema. Conclusions: 7G or 7G GMT HX2 modRNA cocktails boosts de novo CM-like cells and promotes cardiovascular regeneration post-MI. Thus, we highlight that this gene delivery approach not only has high efficiency but also high margin of safety for translation to clinics.


2018 ◽  
Vol 114 (14) ◽  
pp. 1860-1870 ◽  
Author(s):  
Gemma Vilahur ◽  
Manuel Gutiérrez ◽  
Laura Casani ◽  
Carmen Lambert ◽  
Guiomar Mendieta ◽  
...  

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Loretta C. Wangko ◽  
J. H. Awaloei ◽  
Janry A. Pangemanan

Abstract: World-wide, myocardial infarction and heart failure are still the leading causes of deaths and use up a great deal of money. In myocardial infarction there frequently incur cardiomyocyte injuries. Naturally, resident cardiomyocytes will undergo proliferation and contribute to the increasing and repairing of myocardium post infarction. Unfortunately, this capacity of regeneration is very limited. Moreover, injured cardiomyocytes are replaced by scar tissues. Pharmacotherapy with ACE-Inhibitors and β blockers can give some clinical improvement, but can not inhibit the loss of cardiomyocytes. Nowadays, stem cell therapy has proclaimed some promising benefits. Among all the introduced stem cells, mesenchymal stem cells are the most popular since they have the capability to differentiate and then to develop into cardiomyocytes, maintain the myocardial thickness, reduce heart remodeling of the non infarct myocardium, improve heart function, and can be used from allogenic donors. Besides that, these cells are easier to obtain and isolate, are genetically stable, have the capacity for angiogenesis, homing to the injured areas or inflammation, and supplying growth factors and cytokines for tissue repair. Key words: stem cell, cardiomyocyte, transplantation, donor.     Abstrak: Infark miokard dan gagal jantung masih merupakan penyebab kematian utama di dunia dan menyerap biaya pengobatan yang tinggi. Pada infark miokard sering terjadi cedera kardiomiosit. Secara alamiah kardiomiosit residen akan mengalami proliferasi dan mengambil bagian dalam meningkatkan dan memulihkan miokard pasca infark. Kapasitas regenerasi ini sangat terbatas. Selain itu kardiomiosit yang cedera akan digantikan oleh jaringan ikat. Farmakoterapi dengan penghambat ACE dan β bloker dapat memberikan perbaikan klinis, tetapi tidak dapat menghambat kehilangan kardiomiosit. Dewasa ini terapi sel punca telah mengumandangkan manfaat yang menjanjikan. Dari berbagai sel punca yang dikemukakan, sel punca mesensimal yang paling diminati oleh karena kemampuannya berdiferensiasi dan berkembang menjadi kardiomiosit, mempertahankan ketebalan miokard, menurunkan remodeling jantung pada bagian yang tidak infark, memperbaiki fungsi jantung. dan dapat diambil dari donor alogenik. Disamping itu, sel-sel ini lebih mudah diperoleh dan diisolasi, stabil secara genetik, berkapasitas angiogenesis, homing ke tempat cedera atau inflamasi, dan memasok growth factors dan sitokin untuk perbaikan jaringan. Kata kunci: sel punca, kardiomiosit, transplantasi, donor.


2019 ◽  
Vol 22 ◽  
pp. 218-219
Author(s):  
Adrija Hajra ◽  
Aditi Ujjawal ◽  
Karan Sud ◽  
Sandipan Chakraborty ◽  
Dhrubajyoti Bandyopadhyay

2015 ◽  
Vol 37 (2) ◽  
pp. 515-526 ◽  
Author(s):  
Guang-Pu Fan ◽  
Wei Wang ◽  
Hui Zhao ◽  
Lin Cai ◽  
Pei-De Zhang ◽  
...  

Background: To investigate the role of focal adhesion kinase (FAK)-mediated signaling in hypoxia-induced cardiac fibroblasts (CFs) differentiation and cardiac fibrosis post-myocardial infarction (MI) on a mice model. Methods: CFs of neonatal C57BL/6 mice were treated under normoxic, hypoxic, or hypoxic+PP2 (known as a Src kinase family inhibitor) conditions. Gene expressions of FAK, alpha-smooth muscle actin (α-SMA) and collagen type I alpha 1 (Col1α1), or α-SMA and vimentin levels were performed by RT-PCR and immunofluorescence staining, respectively. Thirty mice were surgically treated into Sham (n=7) and MI (n=23) groups; and FAK inhibitor PF-562271 was given to six survivor MI mice (as PF group, from 15 survivors). Heart function and collagenous tissues were examined by echocardiography, as well as by Masson‘s trichrome and Sirius red staining, respectively. Type I collagen, FAK protein, mTOR, ERK1/2, AKT, P70S6K and phospho-FAK levels were also analyzed. Results: FAK inhibition with PP2 significantly decreased CFs differentiation and collagen synthesis under hypoxia treatment. In vivo, PF-562271 treatment resulted in fibrosis attenuation; however, deteriorated heart function of MI mice could not be significantly improved. PF-562271 may affect phospho-mTOR (p<0.05), phospho-ERK1/2 (p<0.01), phospho-AKT (p<0.001) and phospho-P70S6K (p<0.05) to exert its benefits. FAK can be activated either under hypoxia in CFs or MI in a mouse model to promote fibrosis. However, pharmacological inhibition of FAK can attenuate fibrosis response. Conclusion: This study provides novel evidence that FAK inhibition may become a promising pharmaceutical strategy to attenuate fibrosis post-MI.


Sign in / Sign up

Export Citation Format

Share Document