Cardiac function evaluation of bone marrow mesenchymal stromal cells intracoronary transplantation in acute myocardial infarction Lee-Sung mini-PIG model

Cytotherapy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. S75
Author(s):  
C. Hou ◽  
C. Lin ◽  
C. Wu ◽  
L. Tsung ◽  
M. Lin ◽  
...  
Cytotherapy ◽  
2021 ◽  
Author(s):  
Sujitha Thavapalachandran ◽  
Thi Yen Loan Le ◽  
Sara Romanazzo ◽  
Fairooj N. Rashid ◽  
Masahito Ogawa ◽  
...  

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
James Tsoporis ◽  
Shehla Izhar ◽  
Jean-Francois Desjardins ◽  
Gerald Proteau ◽  
Gustavo Yannarelli ◽  
...  

The beneficial effects originally attributed to the ability of bone-marrow derived mesenchymal stromal cells (BM-MSCs) to differentiate into cardiomyocytes have been questioned due to the transient presence of donor cells at injury site following myocardial infarction (MI) suggesting that the MSC-induced improvement in hemodynamic function may be attributable to paracrine effects. We showed that S100A6, a 20 kDa EF-hand calcium-binding dimer, is upregulated and secreted following MI and forced expression post-MI was beneficial to the preservation of cardiac function. The aim of this study was to determine whether the beneficial effects of infused BM-MSCs may be related to the autocrine secretion of S100A6. Balb/c murine cultured green fluorescence protein (GFP)-marked BM-MSCs express S100A6 at baseline and in response to hypoxia (5%C02/95% N2) for 1 hr increase S100A6 mRNA and protein (2-3 fold, and release S100A6 (1 nM) in the culture media, responses inhibited in BM-MSCs transfected with S100A6 siRNA. Treatment of neonatal Balb/c cardiac myocytes with human recombinant S100A6 (1nM) for 1-24 hrs attenuated baseline apoptosis (30 per cent decrease in BAX/BCL2 ratio), induced cyclin-dependent kinase 1(CDK1) mRNA 1.5 fold, miR199a 2 fold and myocyte proliferation 2.5 fold, the latter inhibited by anti-miR 199a. In 12 week old Balb/c mice, saline or GFP-marked BM-MSCs transfected with either a scrambled or S100A6 siRNA were infused intravenously 3-4 hrs post coronary artery ligation. After 3-4 days the GFP-marked cells were confined to ischemic areas and represented approximately 10% of total cellularity and co-expressed collagen type IV and myosin heavy chain, characteristic of MSCs and cardiomyocytes, respectively, and were CD45(-). Despite the absence of donor cells in the infarcted myocardium 21 days after infusion, mice that have received MSCs alone compared to MSCs transfected with an S100A6 siRNA or saline alone showed a 6-fold increase in S100A6 mRNA and protein, 3-fold increase in miR199a in peri-infarcted myocardium, attenuated myocyte hypertrophy, decreased fibrosis and apoptosis, and preservation of cardiac function. In conclusion, the secretion of S100A6 by infused BM-MSCs may contribute in limiting adverse LV remodeling post-MI.


2010 ◽  
Vol 19 (12) ◽  
pp. 1599-1607 ◽  
Author(s):  
Wei Wang ◽  
Peifeng Jin ◽  
Lei Wang ◽  
Zhikai Yang ◽  
Shengshou Hu ◽  
...  

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Mahan Shahrivari ◽  
Elizabeth Wise ◽  
Doris A Taylor ◽  
Carl J Pepine ◽  
Timothy D Henry ◽  
...  

Background: Intracoronary infusion of bone marrow (BM) mononuclear cells (BM-MNCs) late after acute myocardial infarction (AMI) has shown no improvement in global or regional left ventricular (LV) function (LateTIME and SWISS-AMI). Studies in experimental AMI models suggest a possible cytokine-related depression of progenitor cell function. Furthermore, BM cell content is correlated with the LV functional response. Accordingly, we hypothesize that inflammatory cytokines associated with the late phase of AMI may impair BM function and alter progenitor cell subsets. Method: Patients with previous AMI (n=87) were recruited in a multicenter cell therapy trial by the Cardiovascular Cell Therapy Research Network (CCTRN LateTIME, NCT00684060). BM and peripheral blood (PB) were collected 2-3 weeks after AMI and examined for cell phenotypes and progenitor capacities as well as PB inflammatory and angiogenic cytokines in a core laboratory. Multiple regression analyses were conducted and correlations between cytokine levels and cell phenotypes, cell functions, and post-MI cardiac function were determined. BM from healthy donors, handled in the same manner, was used as a reference. Result: Of 26 cytokines analyzed, IL-6 showed a negative correlation with ECFC colony maximum in BM (estimate±SE (SEE) -0.13±0.04 P=0.007, multivariableR2: 0.59) and Healthy BM showed decreased ECFC colony outgrowth in the presence of IL-6 (P <0.05), in a dose-dependent manner. PDGF-BB positively correlated with CFU-EC colony maximum in BM (SEE 0.006± 0.002, P=0.023, R2: 0.22), MSC colony maximum in BM (SEE 0.006±0.002, P=0.023, R2: 0.17) and MSC colony maximum in PB (SSE 0.018±0.005, P=0.00005, R2:0.24). No significant correlations were found between cardiac function after AMI and PB cytokine levels. Conclusions: At 2-3 weeks after AMI, PB levels of the angiogenic cytokine, PDGF-BB and the pro-inflammatory cytokine, IL-6, were associated with BM cell phenotype and function. IL-6 has the potential to impair endothelial progenitor cell capacity; inhibiting IL-6 may be a target for improving the regenerative capacity of BM cells after AMI.


Sign in / Sign up

Export Citation Format

Share Document