Fibrin Substrate Supports Chondrogenesis of Adipose-Derived Stem Cells Supplemented by Human Platelet-Rich Plasma and L-Ascorbic Acid 2-Phosphate

Cytotherapy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. S181
Author(s):  
I. Rosadi ◽  
K. Fernandi Moegni ◽  
S. AD ◽  
S. Sobariah ◽  
I. Rosliana ◽  
...  
2019 ◽  
Vol 3 (1) ◽  
pp. 26 ◽  
Author(s):  
Imam Rosadi ◽  
Karina Karina ◽  
Iis Rosliana ◽  
Siti Sobariah ◽  
Irsyah Afini ◽  
...  

Background: Microtia is a congenital malformation in the external ear due to cartilage defect. Adipose-derived stem cells (ADSC) is promising cells to develop cartilage tissue engineering for microtia. In this study, we focused on proliferation and chondrogenesis of ADSC in three different media, which consist of 10% fetal bovine serum (FBS), 10% FBS with L-ascorbic acid, and 10% human platelet rich plasma (PRP). Methods: ADSC were induced to differentiate into adipocytes, chondrocyte and osteocytes. ADSC morphology, proliferation and population doubling time was compared in three different media and analysed. Observation and alcian blue staining were done every 7 days to assess chondrogenic potency of ADSC from each treatment.Results: Isolated ADSC were able to differentiate into adipocytes, osteocytes and chondrocytes. ADSC in all group have fibroblast-like morphology, but cells in 10% FBS and 10% FBS with LAA group were flattened and larger. ADSC in 10% PRP group proliferates faster than 10% FBS with and without LAA. PDT values of ADSC were 34 hours, 44 hours and 48 hours, respectively for 10% PRP, 10% FBS with LAA and 10% FBS group. Alcian blue staining revealed that ADSC in 10% FBS with LAA and 10% PRP were able to proceed to chondrogenesis when cultured time were prolong up to 21 days, but not with ADSC in 10% FBS. Conclusion: We conclude that adding 10% FBS with LAA or 10% PRP into medium culture can support proliferation and chondrogenesis of ADSC. Key words: human ADSC, PRP, L-ascorbic acid, proliferation, chondrogenesis


2020 ◽  
Vol 24 (1) ◽  
pp. 7
Author(s):  
Imam Rosadi ◽  
Karina Karina ◽  
Komang A. Wahyuningsih ◽  
Anggraini Barlian ◽  
Iis Rosliana ◽  
...  

Rekayasa jaringan terdiri dari 3 komponen utama yaitu sel, nutrisi, dan scaffold. Penggunaan sel punca asal jaringan lemak (adipose-derived stem cells/ ADSCs) telah banyak dikembangkan sebagai sumber sel dalam teknologi rekayasa jaringan. Medium yang digunakan dalam mendukung pertumbuhan sel diantaranya medium yang mengandung serum seperti fetal bovine serum (FBS), kombinasi FBS dan L-ascorbic acid 2-phosphate (LAA) atau platelet-rich plasma (PRP). Pada penelitian ini, sutera asal Bombyx mori diproduksi menjadi scaffold sutera ukuran pori 100µm kemudian ADSCs dikultur diatas scaffold dalam medium mengandung 10% FBS, 10% FBS-LAA atau 10% PRP. Uji yang dilakukan adalah uji pertumbuhan ADSCs yang dikultur pada polystyrene kemudian uji biokompabilitas scaffold sutera pada ADSCs dalam medium mengandung 10% FBS, 10% FBS-LAA dan 10% PRP. Hasilnya menunjukkan bahwa ketiga kelompok ADSCs dalam variasi medium yang mengandung FBS, FBS-LAA atau PRP dapat mendukung pertumbuhan sel. Ketiga medium tersebut juga tidak berbeda bermakna antar kelompok pada uji biokompabilitas ADSCs yang dikultur pada scaffold sutera. Berdasarkan hasil tersebut, scaffold sutera berpotensi sebagai substrat ADSCs yang dapat dikembangkan sebagai teknologi rekayasa jaringan.


2015 ◽  
Vol 21 (5-6) ◽  
pp. 895-905 ◽  
Author(s):  
Satoshi Tajima ◽  
Morikuni Tobita ◽  
Hakan Orbay ◽  
Hiko Hyakusoku ◽  
Hiroshi Mizuno

Cartilage regenerative medicine has been met with much interest due to their ability to inhibit disease progression of osteoarthritis (OA). The use of adipose-derived stem cells has been suggested as a reliable method for OA treatment because of their potential to differentiate into a variety of cell lines and their potent capability to self-renewal and repair. The aim of this study is to assess adipose-derived stem cells in combination with PRP ability in treating a patient with knee OA. A 53-year- old man with osteoarthritis was selected for this treatment. Human abdominal subcutaneous adipose sample was obtained from a patient with knee OA. Stem cells were obtained from adipose tissue of abdominal origin by digesting lipoaspirate tissue with collagenase. ADSCs cultured in DMEM medium supplemented with 10% FBS. Also, ADSCs expanded and characterized by flow cytometry. These stem cells, along with platelet-rich plasma and calcium chloride, were injected into the right knee. Pre-treatment and post-treatment MRI scans, physical therapy, and pain score data were then analyzed. The MRI data for the patient demonstrated significant positive changes. Probable cartilage regeneration was sensible in the patient. Along with MRI evidence, the measured physical therapy outcomes, subjective pain, and functional status all improved. Autologous adipose-derived stem cell injection, in conjunction with platelet-rich plasma is a promising minimally invasive therapy for osteoarthritis of human knees. The present clinical case report demonstrated that a combination of percutaneous injection of autologous ADSCs and PRPmay be able to regenerate cartilage in human knee OA.


Author(s):  
Phuc Van Pham ◽  
Loan Thi-Tung Dang ◽  
Nhung Hai Truong ◽  
Ngoc Kim Phan

In recent years, Platelet Rich Plasma (PRP) and Adipose-Derived Stem Cells (ADSCs) have been used separately for many clinical applications, especially skin rejuvenation. A combined injection of PRP and ADSCs could therefore be used to treat skin wrinkles. However, there are controversies and reports with conflicting results regarding the efficacy of this treatment. The authors aimed to determine the anti-wrinkle and skin rejuvenation mechanism of combined PRP and ADSCs treatment. The effects of PRP and ADSCs isolated from the same consenting donors were evaluated using in vitro and in vivo models. The in vitro effects of PRP and ADSCs on dermal fibroblast proliferation, collagen production, and inhibition of Matrix Metalloproteinase-1 (MMP-1) production were investigated using a co-culture model. Fibroblasts and ADSCs were cultured within the same dish, but in two separate cavities (using an insert plate), in the presence of the same PRP-supplemented medium. In vivo, the authors evaluated the effects of combined PRP and ADSCs on skin histochemistry, including changes in the dermal layer and collagen production in photo-aged skin (mice). They also determined the survival and differentiation of grafted ADSCs. The results show that combined PRP and ADSCs strongly stimulate in vitro fibroblast proliferation, collagen production, and inhibition of MMP-1 synthesis. Intra-dermal co-injection of PRP and ADSCs was observed to stimulate increased dermal layer thickness and collagen production compared with the untreated group. These results indicate that a combined PRP and ADSC injection can reduce wrinkles more effectively than either PRP or ADSC alone, and provide insight into the clinical use of PRP combined with ADSCs for dermal applications, particularly skin rejuvenation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yuan-Kun Wu ◽  
Yuan-Kun Tu ◽  
Jiashing Yu ◽  
Nai-Chen Cheng

AbstractAscorbic acid-2-phosphate (A2-P) is an oxidation-resistant derivative of ascorbic acid that has been widely employed in culturing adipose-derived stem cells (ASCs) for faster expansion and cell sheet formation. While high dose ascorbic acid is known to induce cellular apoptosis via metabolic stress and genotoxic effects, potential cytotoxic effects of A2-P at high concentrations has not been explored. In this study, the relationship between ASC seeding density and A2-P-induced cytotoxicity was investigated. Spheroid-derived ASCs with smaller cellular dimensions were generated to investigate the effect of cell-cell contact on the resistance to A2-P-induced cytotoxicity. Decreased viability of ASC, fibroblast, and spheroid-derived ASC was noted at higher A2-P concentration, and it could be reverted with high seeding density. Compared to control ASCs, spheroid-derived ASCs seeded at the same density exhibited decreased viability in the A2-P-supplemented medium. The expression of antioxidant enzymes (catalase, SOD1, and SOD2) was enhanced in ASCs at higher seeding densities. However, their enhanced expression in spheroid-derived ASCs was less evident. Furthermore, we found that co-administration of catalase or N-acetylcysteine nullified the observed cytotoxicity. Collectively, A2-P can induce ASC cytotoxicity at higher concentrations, which can be prevented by seeding ASCs at high density or co-administration of another antioxidant.


2019 ◽  
Vol 87 ◽  
pp. 76-87 ◽  
Author(s):  
Meghan Samberg ◽  
Randolph Stone ◽  
Shanmugasundaram Natesan ◽  
Andrew Kowalczewski ◽  
Sandra Becerra ◽  
...  

Cartilage ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 410-416 ◽  
Author(s):  
Timea Spakova ◽  
Judita Amrichova ◽  
Jana Plsikova ◽  
Denisa Harvanova ◽  
Slavomir Hornak ◽  
...  

Objective This study aimed to compare microfracture and application of adipose-derived stem cells (ADSCs) by local adherent technique enhanced by platelet-rich plasma (PRP) to provide a new approach for the repair of cartilage defect. Design Full-thickness cylindrical defects were created in the medial femoral condyle in 9 New Zealand White rabbits (5 months old, 4.65 ± 0.20 kg). Two groups of rabbits ( n = 3) were either treated with ADSCs (Group 1) or the microfracture technique (Group 2) following intraarticular injection of PRP 3 times in weekly intervals. Rabbits in control group ( n = 3) remained untreated. The outcome was assessed macroscopically, histologically, and immunohistochemically. Results At the end of week 12, Group 1 showed better defect filling compared with Group 2. Specimens treated with the combination of ADSCs and PRP exhibited significant differences from the other groups in all criteria of International Cartilage Repair Society macroscopic scoring system. Conclusions Intraarticular injection of autologous PRP in combination with transplantation of autologous ADSCs by local adherent technique enhances the quality of cartilage defect repair with better results in comparison with microfracture surgery in a rabbit model.


2012 ◽  
Vol 130 ◽  
pp. 71
Author(s):  
Nevra Seyhan ◽  
Dogan Alhan ◽  
Ali Ugur Ural ◽  
Armagan Unal ◽  
Mustafa Cihad Avunduk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document