Morphology of the male reproductive tract and spermatozoa of Lasioderma serricorne (Coleoptera: Ptinidae)

Author(s):  
Aline Beatriz Reis ◽  
Karen Salazar ◽  
Camila Folly ◽  
Jamile Fernanda Silva Cossolin ◽  
José Cola Zanuncio ◽  
...  
Author(s):  
Nikolaos Sofikitis ◽  
Aris Kaltsas ◽  
Fotios Dimitriadis ◽  
Jens Rassweiler ◽  
Nikolaos Grivas ◽  
...  

The therapeutic range of cyclic nucleotide phosphodiesterase 5 inhibitors (PDE5) inhibitors is getting wider in the last years. This review study focuses on the potential employment of PDE5 inhibitors as an adjunct tool for the therapeutic management of male infertility. The literature tends to suggest a beneficial effect of PDE5 inhibitors on Leydig and Sertoli cells secretory function. It also appears that PDE5 inhibitors play a role in the regulation of the contractility of the testicular tunica albuginea and the epididymis. Moreover scientific data suggest that PDE5 inhibitors enhance the prostatic secretory function leading to an improvement in sperm motility. Other studies additionally demonstrate a role of PDE5 inhibitors in the regulation of sperm capacitation process. Placebo-controlled, randomized, blind studies are necessary to unambiguously incorporate PDE5 inhibitors as an adjunct tool for the pharmaceutical treatment of semen disorders and male infertility.


1984 ◽  
Vol 32 (6) ◽  
pp. 721 ◽  
Author(s):  
H Marsh ◽  
GE Heinsohn ◽  
TD Glover

The anatomy and histology of the male reproductive tract of the dugong (Dugong dugon) is described. Each testis and its adjacent epididymis lie immediately caudal to the corresponding kidney. The seminal vesicles are large but there is no discrete prostate gland and the bulbo-urethral glands are also diffuse. Both qualitative and quantitative examination of the testes and epididymides of 59 males whose ages have been estimated from tusk dentinal growth layer counts indicate that the male dugong does not produce spermatozoa continuously, despite the absence of a distinct breeding season. Individual dugongs were observed with testes at all stages between complete quiescence and full spermatogenesis, and only 10 of the 40 mature males had fully spermatogenic testes and epididymides packed with spermatozoa. Androgenic and spermatogenic activity of the testes appeared to be in phase, but the testicular histology of some old males suggested that they may have been sterile for long periods.


2009 ◽  
Vol 189 ◽  
pp. S145
Author(s):  
Betzabet Quintanilla-Vega ◽  
Patricia Espíritu-Gordillo ◽  
Yuliana Palacios-Gil ◽  
Margarita Guaderrama-Díaz ◽  
María de Jesús Solís-Heredia ◽  
...  

2019 ◽  
Vol 116 (37) ◽  
pp. 18498-18506 ◽  
Author(s):  
Yoshitaka Fujihara ◽  
Taichi Noda ◽  
Kiyonori Kobayashi ◽  
Asami Oji ◽  
Sumire Kobayashi ◽  
...  

CRISPR/Cas9-mediated genome editing technology enables researchers to efficiently generate and analyze genetically modified animals. We have taken advantage of this game-changing technology to uncover essential factors for fertility. In this study, we generated knockouts (KOs) of multiple male reproductive organ-specific genes and performed phenotypic screening of these null mutant mice to attempt to identify proteins essential for male fertility. We focused on making large deletions (dels) within 2 gene clusters encoding cystatin (CST) and prostate and testis expressed (PATE) proteins and individual gene mutations in 2 other gene families encoding glycerophosphodiester phosphodiesterase domain (GDPD) containing and lymphocyte antigen 6 (Ly6)/Plaur domain (LYPD) containing proteins. These gene families were chosen because many of the genes demonstrate male reproductive tract-specific expression. AlthoughGdpd1andGdpd4mutant mice were fertile, disruptions ofCstandPategene clusters andLypd4resulted in male sterility or severe fertility defects secondary to impaired sperm migration through the oviduct. While absence of the epididymal protein families CST and PATE affect the localization of the sperm membrane protein A disintegrin and metallopeptidase domain 3 (ADAM3), the sperm acrosomal membrane protein LYPD4 regulates sperm fertilizing ability via an ADAM3-independent pathway. Thus, use of CRISPR/Cas9 technologies has allowed us to quickly rule in and rule out proteins required for male fertility and expand our list of male-specific proteins that function in sperm migration through the oviduct.


Sign in / Sign up

Export Citation Format

Share Document