growth layer
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 6)

H-INDEX

17
(FIVE YEARS 1)

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1575
Author(s):  
Wenting Zhang ◽  
Caorui Zhang ◽  
Junmin Wu ◽  
Fei Yang ◽  
Yunlai An ◽  
...  

SiC direct bonding using O2 plasma activation is investigated in this work. SiC substrate and n− SiC epitaxy growth layer are activated with an optimized duration of 60s and power of the oxygen ion beam source at 20 W. After O2 plasma activation, both the SiC substrate and n− SiC epitaxy growth layer present a sufficient hydrophilic surface for bonding. The two 4-inch wafers are prebonded at room temperature followed by an annealing process in an atmospheric N2 ambient for 3 h at 300 °C. The scanning results obtained by C-mode scanning acoustic microscopy (C-SAM) shows a high bonding uniformity. The bonding strength of 1473 mJ/m2 is achieved. The bonding mechanisms are investigated through interface analysis by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). Oxygen is found between the two interfaces, which indicates Si–O and C–O are formed at the bonding interface. However, a C-rich area is also detected at the bonding interface, which reveals the formation of C-C bonds in the activated SiC surface layer. These results show the potential of low cost and efficient surface activation method for SiC direct bonding for ultrahigh-voltage devices applications.


2020 ◽  
pp. 71-73
Author(s):  
Peter B. Best

The conclusion of researchers in the 1950s that humpback whales reached sexual maturity at about age five was largely influenced by their interpretation of baleen tracings, and to achieve consistency with these tracings the accumulation rate of ear plug laminations (growth layer groups: GLGs) was assumed to be two per year. However, ovulation and natural mortality rates calculated by these researchers under the same assumption produced estimates that are difficult to reconcile with other biological data or with more recent estimates using individual re-sighting data. Such disparities are reduced or disappear when an annual accumulation rate is used, in which case their ear plug data would have indicated a mean age at sexual maturity of 9–11 years. Recent estimates of the age of female humpback whales at first calving using longitudinal studies of photoidentified individuals have produced conflicting results, some (from southeastern Alaska) being compatible with the earlier age-determination studies, others (from the Gulf of Maine) suggesting a much younger age.


2019 ◽  
Vol 43 (2) ◽  
pp. 238-243
Author(s):  
Takeomi Isono ◽  
Yumi Kobayashi ◽  
Vladimir N. Burkanov ◽  
Orio Yamamura

2019 ◽  
Vol 100 (4) ◽  
pp. 1350-1363 ◽  
Author(s):  
Gina L Lonati ◽  
Amber R Howell ◽  
Jeffrey A Hostetler ◽  
Paul Schueller ◽  
Martine de Wit ◽  
...  

AbstractAges of Florida manatees (Trichechus manatus latirostris) can be estimated by counting annual growth layer groups (GLGs) in the periotic dome portion of the tympanoperiotic complex of their earbones. The Florida Fish and Wildlife Conservation Commission manages an archive of more than 8,700 Florida manatee earbones collected from salvaged carcasses from 1989 to 2017. Our goal was to comprehensively evaluate techniques used to estimate age, given this large sample size and changes to processing protocols and earbone readers over time. We developed new standards for estimating ages from earbones, involving two independent readers to obtain measurements of within- and between-reader precision. To quantify accuracy, precision, and error, 111 earbones from manatees with approximately known ages (first known as calves: “KAC”) and 69 earbones from manatees with minimum known ages (“MKA,” based on photo-identification sighting histories) were processed, and their ages were estimated. There was greater precision within readers (coefficient of variation, CV: 2.4–8.5%) than between readers (CV: 13.1–13.3%). The median of age estimates fell within the true age range for 63.1% of KAC cases and was at least the sighting duration for 75.0% of MKA cases. Age estimates were generally unbiased, as indicated by an average raw error ± SD of −0.05 ± 3.05 years for the KAC group. The absolute error (i.e., absolute value of raw error) of the KAC data set averaged 1.75 ± 2.50 years. Accuracy decreased and error increased with increasing known age, especially for animals over 15 years old, whose ages were mostly underestimated due to increasing levels of resorption (the process of bone turnover that obscures GLGs). Understanding the degree of uncertainty in age estimates will help us assess the utility of age data in manatee population models. We emphasize the importance of standardizing and routinely reviewing age estimation and processing protocols to ensure that age data remain consistent and reliable.


2018 ◽  
Vol 10 ◽  
Author(s):  
Fiona L. Read ◽  
Aleta A. Hohn ◽  
Christina H. Lockyer

This paper presents a critical review of methods for estimating absolute or relative age in marine mammals. Absolute age is achieved by counting growth layer groups (GLGs) in hard structures such as teeth, ear plugs, baleen, bones and claws. Relative age can be obtained by methods such as aspartic acid racemisation, genetic telomeres, bone mineral density, fatty acid signatures and other methods. Each method is discussed in detail. Accuracy and precision, including inter-reader calibration and anomalies, as well as methods of validating GLG deposition rates are also addressed. Each section concludes with methods of age estimation applicable to monodontids, and suggestions on the focus of future age-estimation research.


2018 ◽  
Vol 57 (1) ◽  
pp. 31-50 ◽  
Author(s):  
Erica M. Griffin ◽  
Terry J. Schuur ◽  
Alexander V. Ryzhkov

AbstractThis study implements a new quasi-vertical profile (QVP) methodology to investigate the microphysical evolution and significance of intriguing winter polarimetric signatures and their statistical correlations. QVPs of transitional stratiform and pure snow precipitation are analyzed using WSR-88D S-band data, alongside their corresponding environmental thermodynamic High-Resolution Rapid Refresh model analyses. QVPs of KDP and ZDR are implemented to demonstrate their value in interpreting elevated ice processes. Several fascinating and repetitive signatures are observed in the QVPs for differential reflectivity ZDR and specific differential phase KDP, in the dendritic growth layer (DGL), and at the tops of clouds. The most striking feature is maximum ZDR (up to 6 dB) in the DGL occurring near the −10-dBZ ZH contour within low KDP and during shallower and warmer cloud tops. Conversely, maximum KDP (up to 0.3° km−1) in the DGL occurs within low ZDR and during taller and colder cloud tops. Essentially, ZDR and KDP in the DGL are anticorrelated and strongly depend on cloud-top temperature. Analyses also show correlations indicating larger ZDR within lower ZH in the DGL and larger KDP within greater ZH in the DGL. The high-ZDR regions are likely dominated by growth of a mixture of highly oblate dendrites and/or hexagonal plates, or prolate needles. Regions of high KDP are expected to be overwhelmed with snow aggregates and crystals with irregular or nearly spherical shapes, seeded at cloud tops. Furthermore, QVP indications of hexagonal plate crystals within the DGL are verified using in situ microphysical measurements, demonstrating the reliability of QVPs in evaluating ice microphysics in upper regions of winter clouds.


Sign in / Sign up

Export Citation Format

Share Document