scholarly journals Sharp blow up estimates and precise asymptotic behavior of singular positive solutions to fractional Hardy-Hénon equations

2021 ◽  
Vol 278 ◽  
pp. 393-429
Author(s):  
Hui Yang ◽  
Wenming Zou
2004 ◽  
Vol 14 (10) ◽  
pp. 1425-1450 ◽  
Author(s):  
CRISTINA BRÄNDLE ◽  
PABLO GROISMAN ◽  
JULIO D. ROSSI

We present adaptive procedures in space and time for the numerical study of positive solutions to the following problem: [Formula: see text] with p,m>0. We describe how to perform adaptive methods in order to reproduce the exact asymptotic behavior (the blow-up rate and the blow-up set) of the continuous problem.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Zhigao Shi ◽  
Xiaotao Qian

AbstractIn this paper, we study the following nonlocal problem: $$ \textstyle\begin{cases} - (a-b \int _{\Omega } \vert \nabla u \vert ^{2}\,dx ) \Delta u= \lambda \vert u \vert ^{q-2}u, & x\in \Omega , \\ u=0, & x\in \partial \Omega , \end{cases} $$ { − ( a − b ∫ Ω | ∇ u | 2 d x ) Δ u = λ | u | q − 2 u , x ∈ Ω , u = 0 , x ∈ ∂ Ω , where Ω is a smooth bounded domain in $\mathbb{R}^{N}$ R N with $N\ge 3$ N ≥ 3 , $a,b>0$ a , b > 0 , $1< q<2$ 1 < q < 2 and $\lambda >0$ λ > 0 is a parameter. By virtue of the variational method and Nehari manifold, we prove the existence of multiple positive solutions for the nonlocal problem. As a co-product of our arguments, we also obtain the blow-up and the asymptotic behavior of these solutions as $b\searrow 0$ b ↘ 0 .


1993 ◽  
Vol 18 (12) ◽  
pp. 2071-2106
Author(s):  
Philippe Clément ◽  
Raúl Manásevich ◽  
Enzo Mitidieri

2021 ◽  
Vol 19 (1) ◽  
pp. 259-267
Author(s):  
Liuyang Shao ◽  
Yingmin Wang

Abstract In this study, we consider the following quasilinear Choquard equation with singularity − Δ u + V ( x ) u − u Δ u 2 + λ ( I α ∗ ∣ u ∣ p ) ∣ u ∣ p − 2 u = K ( x ) u − γ , x ∈ R N , u > 0 , x ∈ R N , \left\{\begin{array}{ll}-\Delta u+V\left(x)u-u\Delta {u}^{2}+\lambda \left({I}_{\alpha }\ast | u{| }^{p})| u{| }^{p-2}u=K\left(x){u}^{-\gamma },\hspace{1.0em}& x\in {{\mathbb{R}}}^{N},\\ u\gt 0,\hspace{1.0em}& x\in {{\mathbb{R}}}^{N},\end{array}\right. where I α {I}_{\alpha } is a Riesz potential, 0 < α < N 0\lt \alpha \lt N , and N + α N < p < N + α N − 2 \displaystyle \frac{N+\alpha }{N}\lt p\lt \displaystyle \frac{N+\alpha }{N-2} , with λ > 0 \lambda \gt 0 . Under suitable assumption on V V and K K , we research the existence of positive solutions of the equations. Furthermore, we obtain the asymptotic behavior of solutions as λ → 0 \lambda \to 0 .


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Habib Mâagli ◽  
Noureddine Mhadhebi ◽  
Noureddine Zeddini

We establish the existence and uniqueness of a positive solution for the fractional boundary value problem , with the condition , where , and is a nonnegative continuous function on that may be singular at or .


Author(s):  
J. Aguirre ◽  
M. Escobedo

SynopsisWe study the blow-up of positive solutions of the Cauchy problem for the semilinear parabolic equationwhere u is a scalar function of the spatial variable x ∈ ℝN and time t > 0, a ∈ ℝV, a ≠ 0, 1 < p and 1 ≦ q. We show that: (a) if p > 1 and 1 ≦ q ≦ p, there always exist solutions which blow up in finite time; (b) if 1 < q ≦ p ≦ min {1 + 2/N, 1 + 2q/(N + 1)} or if q = 1 and 1 < p ≦ l + 2/N, then all positive solutions blow up in finite time; (c) if q > 1 and p > min {1 + 2/N, 1 + 2q/N + 1)}, then global solutions exist; (d) if q = 1 and p > 1 + 2/N, then global solutions exist.


1994 ◽  
Vol 113 (2) ◽  
pp. 265-271 ◽  
Author(s):  
G. Caristi ◽  
E. Mitidieri

Sign in / Sign up

Export Citation Format

Share Document