Spatial movement with diffusion and memory-based self-diffusion and cross-diffusion

2021 ◽  
Vol 305 ◽  
pp. 242-269
Author(s):  
Junping Shi ◽  
Chuncheng Wang ◽  
Hao Wang
2009 ◽  
Vol 3 (4) ◽  
pp. 410-429 ◽  
Author(s):  
Yuan Lou ◽  
Salome Martínez

Author(s):  
Vadim N Biktashev ◽  
Mikhail A Tsyganov

We consider a FitzHugh–Nagumo system of equations where the traditional diffusion terms are replaced with linear cross-diffusion of components. This system describes solitary waves that have unusual form and are capable of quasi-soliton interaction. This is different from the classical FitzHugh–Nagumo system with self-diffusion, but similar to a predator–prey model with taxis of populations on each other's gradient which we considered earlier. We study these waves by numerical simulations and also present an analytical theory, based on the asymptotic behaviour which arises when the local dynamics of the inhibitor field are much slower than those of the activator field.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Hongwei Yin ◽  
Xiaoyong Xiao ◽  
Xiaoqing Wen

For a predator-prey system, cross-diffusion has been confirmed to emerge Turing patterns. However, in the real world, the tendency for prey and predators moving along the direction of lower density of their own species, called self-diffusion, should be considered. For this, we investigate Turing instability for a predator-prey system with nonlinear diffusion terms including the normal diffusion, cross-diffusion, and self-diffusion. A sufficient condition of Turing instability for this system is obtained by analyzing the linear stability of spatial homogeneous equilibrium state of this model. A series of numerical simulations reveal Turing parameter regions of the interaction of diffusion parameters. According to these regions, we further demonstrate dispersion relations and spatial patterns. Our results indicate that self-diffusion plays an important role in the spatial patterns.


2020 ◽  
Vol 145 (3) ◽  
pp. 473-511 ◽  
Author(s):  
José A. Carrillo ◽  
Francis Filbet ◽  
Markus Schmidtchen

Abstract In this work we present the convergence of a positivity preserving semi-discrete finite volume scheme for a coupled system of two non-local partial differential equations with cross-diffusion. The key to proving the convergence result is to establish positivity in order to obtain a discrete energy estimate to obtain compactness. We numerically observe the convergence to reference solutions with a first order accuracy in space. Moreover we recover segregated stationary states in spite of the regularising effect of the self-diffusion. However, if the self-diffusion or the cross-diffusion is strong enough, mixing occurs while both densities remain continuous.


2015 ◽  
Vol 08 (01) ◽  
pp. 1550006 ◽  
Author(s):  
Shaban Aly ◽  
Houari B. Khenous ◽  
Fatma Hussien

Modeling and simulation of infectious diseases help to predict the likely outcome of an epidemic. In this paper, a spatial susceptible-infective-susceptible (SIS) type of epidemiological disease model with self- and cross-diffusion are investigated. We study the effect of diffusion on the stability of the endemic equilibrium with disease-induced mortality and nonlinear incidence rate. In the absence of diffusion the stationary solution stays stable but becomes unstable with respect to diffusion and that Turing instability takes place. We show that a standard (self-diffusion) system may be either stable or unstable, cross-diffusion response can stabilize an unstable standard system or decrease a Turing space (the space which the emergence of spatial patterns is holding) compared to the Turing space with self-diffusion, i.e. the cross-diffusion response is an important factor that should not be ignored when pattern emerges. Numerical simulations are provided to illustrate and extend the theoretical results.


2021 ◽  
Vol 31 (01) ◽  
pp. 2150006
Author(s):  
Shihong Zhong ◽  
Jinliang Wang ◽  
Junhua Bao ◽  
You Li ◽  
Nan Jiang

In this paper, a couple map lattice (CML) model is used to study the spatiotemporal dynamics and Turing patterns for a space-time discrete generalized toxic-phytoplankton-zooplankton system with self-diffusion and cross-diffusion. First, the existence and stability conditions for fixed points are obtained by using linear stability analysis. Second, the conditions for the occurrence of flip bifurcation, Neimark–Sacker bifurcation and Turing bifurcation are obtained by using the center manifold reduction theorem and bifurcation theory. The results show that there exist two nonlinear mechanisms, flip-Turing instability and Neimark–Sacker–Turing instability. Moreover, some numerical simulations are used to illustrate the theoretical results. Interestingly, rich dynamical behaviors, such as periodic points, periodic or quasi-periodic orbits, chaos and interesting patterns (plaques, curls, spirals, circles and other intermediate patterns) are found. The results obtained in the CML model contribute to comprehending the complex pattern formation of spatially extended discrete generalized toxic-phytoplankton-zooplankton system.


Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 229 ◽  
Author(s):  
Nitu Kumari ◽  
Nishith Mohan

Diffusion has long been known to induce pattern formation in predator prey systems. For certain prey-predator interaction systems, self diffusion conditions ceases to induce patterns, i.e., a non-constant positive solution does not exist, as seen from the literature. We investigate the effect of cross diffusion on the pattern formation in a tritrophic food chain model. In the formulated model, the prey interacts with the mid level predator in accordance with Holling Type II functional response and the mid and top level predator interact via Crowley-Martin functional response. We prove that the stationary uniform solution of the system is stable in the presence of diffusion when cross diffusion is absent. However, this solution is unstable in the presence of both self diffusion and cross diffusion. Using a priori analysis, we show the existence of a inhomogeneous steady state. We prove that no non-constant positive solution exists in the presence of diffusion under certain conditions, i.e., no pattern formation occurs. However, pattern formation is induced by cross diffusion because of the existence of non-constant positive solution, which is proven analytically as well as numerically. We performed extensive numerical simulations to understand Turing pattern formation for different values of self and cross diffusivity coefficients of the top level predator to validate our results. We obtained a wide range of Turing patterns induced by cross diffusion in the top population, including floral, labyrinth, hot spots, pentagonal and hexagonal Turing patterns.


Sign in / Sign up

Export Citation Format

Share Document