The primitive equations approximation of the anisotropic horizontally viscous 3D Navier-Stokes equations

2022 ◽  
Vol 306 ◽  
pp. 492-524
Author(s):  
Jinkai Li ◽  
Edriss S. Titi ◽  
Guozhi Yuan
Author(s):  
Yoshikazu Giga ◽  
Mathis Gries ◽  
Matthias Hieber ◽  
Amru Hussein ◽  
Takahito Kashiwabara

AbstractConsider the primitive equations on $$\mathbb {R}^2\times (z_0,z_1)$$ R 2 × ( z 0 , z 1 ) with initial data a of the form $$a=a_1+a_2$$ a = a 1 + a 2 , where $$a_1 \in \mathrm{BUC}_\sigma (\mathbb {R}^2;L^1(z_0,z_1))$$ a 1 ∈ BUC σ ( R 2 ; L 1 ( z 0 , z 1 ) ) and $$a_2 \in L^\infty _\sigma (\mathbb {R}^2;L^1(z_0,z_1))$$ a 2 ∈ L σ ∞ ( R 2 ; L 1 ( z 0 , z 1 ) ) . These spaces are scaling-invariant and represent the anisotropic character of these equations. It is shown that for $$a_1$$ a 1 arbitrary large and $$a_2$$ a 2 sufficiently small, this set of equations admits a unique strong solution which extends to a global one and is thus strongly globally well posed for these data provided a is periodic in the horizontal variables. The approach presented depends crucially on mapping properties of the hydrostatic Stokes semigroup in the $$L^\infty (L^1)$$ L ∞ ( L 1 ) -setting. It can be seen as the counterpart of the classical iteration schemes for the Navier–Stokes equations, now for the primitive equations in the $$L^\infty (L^1)$$ L ∞ ( L 1 ) -setting.


Nonlinearity ◽  
2020 ◽  
Vol 33 (12) ◽  
pp. 6502-6516
Author(s):  
Ken Furukawa ◽  
Yoshikazu Giga ◽  
Matthias Hieber ◽  
Amru Hussein ◽  
Takahito Kashiwabara ◽  
...  

2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 56-63
Author(s):  
W. Kyle Anderson ◽  
James C. Newman ◽  
David L. Whitfield ◽  
Eric J. Nielsen

AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 1603-1614
Author(s):  
Martin Scholtysik ◽  
Bernhard Mueller ◽  
Torstein K. Fannelop

Sign in / Sign up

Export Citation Format

Share Document