Ceria dispersed on carbon materials for the catalytic ozonation of sulfamethoxazole

2013 ◽  
Vol 1 (3) ◽  
pp. 260-269 ◽  
Author(s):  
Alexandra G. Gonçalves ◽  
José J.M. Órfão ◽  
Manuel F.R. Pereira
Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 241 ◽  
Author(s):  
Bing Wang ◽  
Huan Zhang ◽  
Feifei Wang ◽  
Xingaoyuan Xiong ◽  
Kun Tian ◽  
...  

Catalytic ozonation is believed to belong to advanced oxidation processes (AOPs). Over the past decades, heterogeneous catalytic ozonation has received remarkable attention as an effective process for the degradation of refractory organics in wastewater, which can overcome some disadvantages of ozonation alone. Metal oxides, metals, and metal oxides supported on oxides, minerals modified with metals, and carbon materials are widely used as catalysts in heterogeneous catalytic ozonation processes due to their excellent catalytic ability. An understanding of the application can provide theoretical support for selecting suitable catalysts aimed at different kinds of wastewater to obtain higher pollutant removal efficiency. Therefore, the main objective of this review article is to provide a summary of the accomplishments concerning catalytic ozonation to point to the major directions for choosing the catalysts in catalytic ozonation in the future.


2009 ◽  
Vol 132 (1-2) ◽  
pp. 1-9 ◽  
Author(s):  
C. A. Orge ◽  
J. P. S. Sousa ◽  
F. Gonçalves ◽  
C. Freire ◽  
J. J. M. Órfão ◽  
...  

Author(s):  
Tomoko Ehara ◽  
Shuji Sumida ◽  
Tetsuaki Osafune ◽  
Eiji Hase

As shown previously, Euglena cells grown in Hutner’s medium in the dark without agitation accumulate wax as well as paramylum, and contain proplastids showing no internal structure except for a single prothylakoid existing close to the envelope. When the cells are transferred to an inorganic medium containing ammonium salt and the cell suspension is aerated in the dark, the wax was oxidatively metabolized, providing carbon materials and energy 23 for some dark processes of plastid development. Under these conditions, pyrenoid-like structures (called “pro-pyrenoids”) are formed at the sites adjacent to the prolamel larbodies (PLB) localized in the peripheral region of the proplastid. The single prothylakoid becomes paired with a newly formed prothylakoid, and a part of the paired prothylakoids is extended, with foldings, in to the “propyrenoid”. In this study, we observed a concentration of RuBisCO in the “propyrenoid” of Euglena gracilis strain Z using immunoelectron microscopy.


Sign in / Sign up

Export Citation Format

Share Document