Cellulosic Grewia Optiva Fibres: Towards Chemistry, Surface Engineering and Sustainable Materials

Author(s):  
Ashvinder K. Rana ◽  
Prasad Potluri ◽  
Vijay Kumar Thakur
Author(s):  
J S Burnell-Gray ◽  
P K Datta
Keyword(s):  

2020 ◽  
Vol 38 (6A) ◽  
pp. 879-886
Author(s):  
Ahmed S. Kadhim ◽  
Alaa A. Atiyah ◽  
Shakir A. Salih

This paper aims to investigate the influence of utilization micro cement kiln dust as a sustainable materials additive in order to reduce the voids and micro cracks in the cementitious mortar materials which cause a drastic reduction in the load carrying capacity of the element. Its therefore very important to decrease the pores and enhance the mechanical strength of the cementitious composite materials. In this article, the properties of self-compacting mortar containing micro cement dust additive was experimentally assessed. Micro cement dust powder was added to the self-compacting mortar in (1, 2, 3, 4 and 5 %) percentage by weight of cement to be used as cementitious sustainable materials. The experimental results indicated that the modification and enhancement of the workability of fresh mixture and the mechanical strengths of self-compacting mortar were increased as micro cement dust additives increases. Also; the water absorption and total porosity were decreased with increases of micro cement dust powder.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2237 ◽  
Author(s):  
P. R. Sarika ◽  
Paul Nancarrow ◽  
Abdulrahman Khansaheb ◽  
Taleb Ibrahim

Phenol–formaldehyde (PF) resin continues to dominate the resin industry more than 100 years after its first synthesis. Its versatile properties such as thermal stability, chemical resistance, fire resistance, and dimensional stability make it a suitable material for a wide range of applications. PF resins have been used in the wood industry as adhesives, in paints and coatings, and in the aerospace, construction, and building industries as composites and foams. Currently, petroleum is the key source of raw materials used in manufacturing PF resin. However, increasing environmental pollution and fossil fuel depletion have driven industries to seek sustainable alternatives to petroleum based raw materials. Over the past decade, researchers have replaced phenol and formaldehyde with sustainable materials such as lignin, tannin, cardanol, hydroxymethylfurfural, and glyoxal to produce bio-based PF resin. Several synthesis modifications are currently under investigation towards improving the properties of bio-based phenolic resin. This review discusses recent developments in the synthesis of PF resins, particularly those created from sustainable raw material substitutes, and modifications applied to the synthetic route in order to improve the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document