Hybrid super-porous hydrogel composites with high water vapor adsorption capacity- Adsorption isotherm and kinetics studies

Author(s):  
Hemant Mittal ◽  
Ali Al Alili ◽  
Saeed M Alhassan
Author(s):  
Hemant Mittal ◽  
Ali Al-Alili ◽  
Saeed M. Alhassan

Abstract Deliquescent salts have high water vapor adsorption capacity, but they dissolve in water by forming crystalline hydrates. That restricts their use in different water vapor adsorption applications. However, this limitation can be overcome by incorporating deliquescent salts within a polymer matrix which will keep the salt solution in place. Furthermore, if the polymer matrix used is also capable of adsorbing water vapor, it will further improve the overall performance of desiccant system. Therefore, in this work, we are proposing the synthesis and use of a highly effective new solid polymer desiccant material, i.e. superporous hydrogel (SPHs) of poly(sodium acrylate-co-acrylic acid (P(SA-co-AA)), and subsequently its composite with deliquescent salt, i.e. calcium chloride (CaCl2), to adsorb water vapors from humid air without the dissolution of the salt in the adsorbed water. Parental PAA-SPHs matrix alone exhibited an adsorption capacity of 1.02 gw/gads which increased to 3.35 gw/gads after incorporating CaCl2 salt in the polymer matrix. Both materials exhibited type-III adsorption isotherm and the experimental isotherm data fitted to the Guggenheim, Anderson and Boer (GAB) isotherm model. However, the adsorption kinetics followed linear driving force model which suggested that this extremely high adsorption capacity was due to the diffusion of water molecules into the interconnected pores of SPHs via capillary channels followed by the attachment of adsorbed water molecules to the CaCl2 salt present in the polymer matrix. Furthermore, the adsorbents were used successively for six cycles of adsorption with a very little loss in adsorption capacity. Therefore, the proposed polymer desiccant material overcomes the problem of dissolution of deliquescent salts and opens the doors for a new class of highly effective solid desiccant material.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jin-Young Jung ◽  
Hye-Ryeon Yu ◽  
Se Jin In ◽  
Young Chul Choi ◽  
Young-Seak Lee

The surfaces of carbon molecular sieves (CMSs) were thermally fluorinated to adsorb water vapor. The fluorination of the CMSs was performed at various temperatures (100, 200, 300, and 400°C) to investigate the effects of the fluorine gas (F2) content on the surface properties. Fluorine-related functional groups formed were effectively generated on the surface of the CMSs via thermal fluorination process, and the total pore volume and specific surface area of the pores in the CMSs increased during the thermal fluorination process, especially those with diameters ≤ 8 Å. The water vapor adsorption capacity of the thermally fluorinated CMSs increased compared with the as-received CMSs, which is attributable to the increased specific surface area and to the semicovalent bonds of the C–F groups.


2017 ◽  
Vol 16 (1) ◽  
pp. 207-220 ◽  
Author(s):  
L.A. Pascual-Pineda ◽  
◽  
L. Alamilla-Beltrán ◽  
G.F. Gutiérrez-López ◽  
E. Azuara ◽  
...  

2021 ◽  
Author(s):  
Mengting Jin ◽  
Ondřej Veselý ◽  
Christopher Heard ◽  
Martin Kubů ◽  
Petr Nachtigal ◽  
...  

New zeolitic frameworks can be prepared through the Assembly-Disassembly-Organisation-Reassembly (ADOR) process by exploiting the lability of Ge-O bonds in germanosilicate zeolites to control their hydrolysis. In the disassembly step, two key factors are water and germanium content, but their exact roles remain unknown. Nevertheless, we combined experimental water-vapor adsorption with first principles simulations to identify the mechanism of germanosilicate zeolite disassembly. The results showed that water vapor adsorption on <b>UTL</b> germanosilicate proceeds in reversible (at low partial pressures) and irreversible (at higher partial pressures) modes. Based on our ab initio molecular dynamics simulations, we related these two modes to weak physisorption at low water loading and to reactive transformations at high water loading, via collective mechanisms requiring high local water concentrations. This bimodal behavior also depends on the germanium content as high Ge-content further decreases <b>UTL</b> hydrolytic stability by opening up yet another low-energy disassembly pathway at high water loading. Overall, we discovered, verified and explained the mechanisms of <b>UTL</b> disassembly and its factors. These findings will likely be generalized to other ADORable germanosilicate zeolites and help to find the optimal protocol for the synthesis of new zeolites.


2020 ◽  
Vol 7 (20) ◽  
pp. 3919-3924
Author(s):  
Zeng-Kui Zhu ◽  
Li-Dan Lin ◽  
Jing Zhang ◽  
Xin-Xiong Li ◽  
Yan-Qiong Sun ◽  
...  

A rare 3D porous chiral polyoxoniobate framework has been constructed from two types of isomeric {Cu(en)2KNb24O72} clusters with a 4-connected neb-type topology. This compound exhibits proton conduction and high water vapor adsorption properties.


Sign in / Sign up

Export Citation Format

Share Document