The influence of KOH concentration, oxygen partial pressure and temperature on the oxygen reduction reaction at Pt electrodes

2015 ◽  
Vol 741 ◽  
pp. 100-108 ◽  
Author(s):  
Wen-Yi Yan ◽  
Shi-Li Zheng ◽  
Wei Jin ◽  
Zhong Peng ◽  
Shao-Na Wang ◽  
...  
2017 ◽  
Vol 77 (11) ◽  
pp. 1283-1290
Author(s):  
Rutha Jäger ◽  
Piia Ereth Kasatkin ◽  
Eneli Härk ◽  
Indrek Tallo ◽  
Tanja Kallio ◽  
...  

Author(s):  
Henrik Grimler ◽  
Annika Carlson ◽  
Henrik Ekström ◽  
Carina Lagergren ◽  
Rakel Wreland Lindström ◽  
...  

Abstract To promote the development of anion exchange membrane fuel cells (AEMFC), an understanding of the oxygen reduction reaction (ORR) kinetics in porous gas diffusion electrodes is essential. In this work, experimental polarisation curves for electrodes with different platinum catalyst loadings and oxygen partial pressures at the cathode are fitted to a physics-based porous electrode model in the voltage range from open circuit voltage (OCV) to 0.7 V. The model is verified against polarisation curves with different anode platinum catalyst loading, and hydrogen partial pressures. The reactions are described using a two-step Tafel-Volmer pathway at the anode and concentration-dependent Butler-Volmer kinetics at the cathode. The model shows a good fit to the kinetic region with an exchange current density of 1.0e-8 A/cm2, for oxygen humidified to 95 % RH at 50 °C, a charge transfer coefficient of 0.8 and a first order dependence on oxygen partial pressure. For lower oxygen partial pressure, hydrogen crossover is needed for explaining the downward shift of the polarisation curves in the kinetic region. In the experimental data, the polarisation curves show an apparent limitation at lower hydrogen partial pressures, which can be explained by the lower rate of the Tafel step at these conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Aleksey M. Trunov

Analysis of the role of oxygen-containing nanoclusters in oxygen reduction reaction (ORR) on Pt-electrodes in alkaline media is provided on the basis of the concept of electrochemical processes with slowed stage of consecutive heterogeneous chemical reaction (ConHCR). Under the ConHCR concept, the main factor determining the ORR characteristics is energetic inhomogeneity of electrode surface (EIES) according to Temkin. A new concept, according to which EIES is determined by the Gibbs energy of formation of oxygen-containing surface structures with inclusions of surface defects of the platinum crystal structure, Pts,d, is formulated. A correlation between the level of EIES of Pt-electrodes and packing density of Pts,d atoms on the surface of Pt(hkl) monocrystals is determined. The concept, according to which the stationary potential of ORR process is considered as a “mixed potential” of two reactions (electrochemical reduction of surface atom PtIIs,d and consecutive oxidation of PtIs,d by molecular oxygen), is substantiated. It is proposed that the formation of surface nanocluster transition state [⁎(OO)PtIIs,d(OH)] defines the rate of the entire ORR process on Pt-electrodes in alkaline media.


2020 ◽  
Vol 16 (4) ◽  
pp. 625-638
Author(s):  
Leila Samiee ◽  
Sedigheh Sadegh Hassani

Background: Porous carbon materials are promising candidate supports for various applications. In a number of these applications, doping of the carbon framework with heteroatoms provides a facile route to readily tune the carbon properties. The oxygen reduction reaction (ORR), where the reaction can be catalyzed without precious metals is one of the common applications for the heteroatom-doped carbons. Therefore, heteroatom doped catalysts might have a promising potential as a cathode in Microbial fuel cells (MFCs). MFCs have a good potential to produce electricity from biological oxidization of wastes at the anode and chemical reduction at the cathode. To the best of our knowledge, no studies have been yet reported on utilizing Sulfur trioxide pyridine (STP) and CMK-3 for the preparation of (N and S) doped ordered porous carbon materials. The presence of highly ordered mesostructured and the synergistic effect of N and S atoms with specific structures enhance the oxygen adsorption due to improving the electrocatalytic activity. So the optimal catalyst, with significant stability and excellent tolerance of methanol crossover can be a promising candidate for even other storage and conversion devices. Methods: The physico-chemical properties of the prepared samples were determined by Small Angle X-ray Diffraction (SAXRD), N2 sorption-desorption, Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FESEM) and X-ray Photoelectron Spectroscopy (XPS). The prepared samples were further applied for oxygen reduction reaction (ORR) and the optimal cathode was tested with the Microbial Fuel Cell (MFC) system. Furthermore, according to structural analysis, The HRTEM, and SAXRD results confirmed the formation of well-ordered hexagonal (p6mm) arrays of mesopores in the direction of (100). The EDS and XPS approved that N and S were successfully doped into the CMK-3 carbon framework. Results: Among all the studied CMK-3 based catalysts, the catalyst prepared by STP precursor and pyrolysis at 900°C exhibited the highest ORR activity with the onset potential of 1.02 V vs. RHE and 4 electron transfer number per oxygen molecule in 0.1 M KOH. The high catalyst durability and fuel-crossover tolerance led to stable performance of the optimal cathode after 5000 s operation, while the Pt/C cathode-based was considerably degraded. Finally, the MFC system with the optimal cathode displayed 43.9 mW·m-2 peak power density showing even reasonable performance in comparison to a Pt/C 20 wt.%.cathode. Conclusions: The results revealed that the synergistic effect of nitrogen and sulfur co-doped on the carbon substrate structure leads to improvement in catalytic activity. Also, it was clearly observed that the porous structure and order level of the carbon substrate could considerably change the ORR performance.


Sign in / Sign up

Export Citation Format

Share Document