Associations between the masticatory system and muscle activity of other body districts. A meta-analysis of surface electromyography studies

2011 ◽  
Vol 21 (6) ◽  
pp. 877-884 ◽  
Author(s):  
Giuseppe Perinetti ◽  
Jens Christoph Türp ◽  
Jasmina Primožič ◽  
Roberto Di Lenarda ◽  
Luca Contardo
2021 ◽  
Vol 4 (2) ◽  
pp. 32
Author(s):  
Heather A. Feldner ◽  
Christina Papazian ◽  
Keshia M. Peters ◽  
Claire J. Creutzfeldt ◽  
Katherine M. Steele

Arm recovery varies greatly among stroke survivors. Wearable surface electromyography (sEMG) sensors have been used to track recovery in research; however, sEMG is rarely used within acute and subacute clinical settings. The purpose of this case study was to describe the use of wireless sEMG sensors to examine changes in muscle activity during acute and subacute phases of stroke recovery, and understand the participant’s perceptions of sEMG monitoring. Beginning three days post-stroke, one stroke survivor wore five wireless sEMG sensors on his involved arm for three to four hours, every one to three days. Muscle activity was tracked during routine care in the acute setting through discharge from inpatient rehabilitation. Three- and eight-month follow-up sessions were completed in the community. Activity logs were completed each session, and a semi-structured interview occurred at the final session. The longitudinal monitoring of muscle and movement recovery in the clinic and community was feasible using sEMG sensors. The participant and medical team felt monitoring was unobtrusive, interesting, and motivating for recovery, but desired greater in-session feedback to inform rehabilitation. While barriers in equipment and signal quality still exist, capitalizing on wearable sensing technology in the clinic holds promise for enabling personalized stroke recovery.


2014 ◽  
Vol 564 ◽  
pp. 644-649 ◽  
Author(s):  
Halim Isa ◽  
Rawaida ◽  
Seri Rahayu Kamat ◽  
A. Rohana ◽  
Adi Saptari ◽  
...  

In industries, manual lifting is commonly practiced even though mechanized material handling equipment are provided. Manual lifting is used to transport or move products and goods to a desired place.Improper lifting techniquescontribute to muscle fatigue and low back pain that can lead to work efficiency and low productivity.The objective of this study were to analyze muscle activity in the left and right Erector Spinae, and left and right Biceps Brachii of five female subjects while performing manual lifting taskwithdifferent load mass, lifting height and twist angle.The muscle activitywere measured and analyzed using surface electromyography (sEMG).This study found that the right Biceps Brachii, right and left Erector Spinae experienced fatigue while performingasymmetric lifting (twist angle = 90°) at lifting height of 75 cm and 140 cm with load mass of 5 kg and 10 kg. Meanwhile, the left Biceps Brachii experienced fatigue when the lifting task was set at lifting height of 75 cm, load mass of 5 kg and twist angle of 90°.The load mass and lifting height has a significant influence to Mean Power Frequency (MPF) for left Biceps Brachii, left and right Erector Spinae. This study concluded that reducing the load mass can increase the muscles performance which can extend the transition-to-fatigue stage in the left and right Biceps Brachii and Erector Spinae.


2020 ◽  
Vol 20 (2) ◽  
pp. 215-227
Author(s):  
David Nolan ◽  
Kieran O’Sullivan ◽  
Chris Newton ◽  
Gurpreet Singh ◽  
Benjamin E. Smith

AbstractBackground and aimsTo systemically review the literature to compare freestyle lifting technique, by muscle activity and kinematics, between people with and without low back pain (LBP).MethodsFive databases were searched along with manual searches of retrieved articles by a single reviewer. Studies were included if they compared a freestyle lifting activity between participants with and without LBP. Data were extracted by two reviewers, and studies were appraised using the CASP tool for case-control studies.ResultsNine studies were eligible. Heterogeneity did not allow for meta-analysis. Most studies (n = 8 studies) reported that people with LBP lift differently to pain-free controls. Specifically, people with LBP lift more slowly (n = 6 studies), use their legs more than their back especially when initiating lifting (n = 3 studies), and jerk less during lifting (n = 1 studies). Furthermore, the four larger studies involving people with more severe LBP also showed that people with LBP lift with less spinal range of motion and greater trunk muscle activity for a longer period.ConclusionsPeople with LBP move slower, stiffer, and with a deeper knee bend than pain-free people during freestyle lifting tasks. Interestingly, such a lifting style mirrors how people, with and without LBP, are often told how to lift during manual handling training. The cross-sectional nature of the comparisons does not allow for causation to be determined.ImplicationsThe changes described may show embodiment of cautious movement, and the drive to protect the back. There may be value in exploring whether adopting a lifting style closer to that of pain-free people could help reduce LBP.


2019 ◽  
Vol 129 (10) ◽  
pp. 2347-2353 ◽  
Author(s):  
David J. Bracken ◽  
Gladys Ornelas ◽  
Todd P. Coleman ◽  
Philip A. Weissbrod

2019 ◽  
Vol 50 (4) ◽  
pp. 785-813 ◽  
Author(s):  
Bas Van Hooren ◽  
Joel T. Fuller ◽  
Jonathan D. Buckley ◽  
Jayme R. Miller ◽  
Kerry Sewell ◽  
...  

Abstract Background Treadmills are often used in research, clinical practice, and training. Biomechanical investigations comparing treadmill and overground running report inconsistent findings. Objective This study aimed at comparing biomechanical outcomes between motorized treadmill and overground running. Methods Four databases were searched until June 2019. Crossover design studies comparing lower limb biomechanics during non-inclined, non-cushioned, quasi-constant-velocity motorized treadmill running with overground running in healthy humans (18–65 years) and written in English were included. Meta-analyses and meta-regressions were performed where possible. Results 33 studies (n = 494 participants) were included. Most outcomes did not differ between running conditions. However, during treadmill running, sagittal foot–ground angle at footstrike (mean difference (MD) − 9.8° [95% confidence interval: − 13.1 to − 6.6]; low GRADE evidence), knee flexion range of motion from footstrike to peak during stance (MD 6.3° [4.5 to 8.2]; low), vertical displacement center of mass/pelvis (MD − 1.5 cm [− 2.7 to − 0.8]; low), and peak propulsive force (MD − 0.04 body weights [− 0.06 to − 0.02]; very low) were lower, while contact time (MD 5.0 ms [0.5 to 9.5]; low), knee flexion at footstrike (MD − 2.3° [− 3.6 to − 1.1]; low), and ankle sagittal plane internal joint moment (MD − 0.4 Nm/kg [− 0.7 to − 0.2]; low) were longer/higher, when pooled across overground surfaces. Conflicting findings were reported for amplitude of muscle activity. Conclusions Spatiotemporal, kinematic, kinetic, muscle activity, and muscle–tendon outcome measures are largely comparable between motorized treadmill and overground running. Considerations should, however, particularly be given to sagittal plane kinematic differences at footstrike when extrapolating treadmill running biomechanics to overground running. Protocol registration CRD42018083906 (PROSPERO International Prospective Register of Systematic Reviews).


Sign in / Sign up

Export Citation Format

Share Document