Automated classification of neurological disorders of gait using spatio-temporal gait parameters

2015 ◽  
Vol 25 (2) ◽  
pp. 413-422 ◽  
Author(s):  
Cauchy Pradhan ◽  
Max Wuehr ◽  
Farhoud Akrami ◽  
Maximilian Neuhaeusser ◽  
Sabrina Huth ◽  
...  
Author(s):  
Wei Yan Peh ◽  
John Thomas ◽  
Elham Bagheri ◽  
Rima Chaudhari ◽  
Sagar Karia ◽  
...  

Pathological slowing in the electroencephalogram (EEG) is widely investigated for the diagnosis of neurological disorders. Currently, the gold standard for slowing detection is the visual inspection of the EEG by experts, which is time-consuming and subjective. To address those issues, we propose three automated approaches to detect slowing in EEG: Threshold-based Detection System (TDS), Shallow Learning-based Detection System (SLDS), and Deep Learning-based Detection System (DLDS). These systems are evaluated on channel-, segment-, and EEG-level. The three systems perform prediction via detecting slowing at individual channels, and those detections are arranged in histograms for detection of slowing at the segment- and EEG-level. We evaluate the systems through Leave-One-Subject-Out (LOSO) cross-validation (CV) and Leave-One-Institution-Out (LOIO) CV on four datasets from the US, Singapore, and India. The DLDS achieved the best overall results: LOIO CV mean balanced accuracy (BAC) of 71.9%, 75.5%, and 82.0% at channel-, segment- and EEG-level, and LOSO CV mean BAC of 73.6%, 77.2%, and 81.8% at channel-, segment-, and EEG-level. The channel- and segment-level performance is comparable to the intra-rater agreement (IRA) of an expert of 72.4% and 82%. The DLDS can process a 30 min EEG in 4 s and can be deployed to assist clinicians in interpreting EEGs.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Angela Ehrhardt ◽  
Pascal Hostettler ◽  
Lucas Widmer ◽  
Katja Reuter ◽  
Jens Alexander Petersen ◽  
...  

AbstractFalls are common in patients with neurological disorders and are a primary cause of injuries. Nonetheless, fall-associated gait characteristics are poorly understood in these patients. Objective, quantitative gait analysis is an important tool to identify the principal fall-related motor characteristics and to advance fall prevention in patients with neurological disorders. Fall incidence was assessed in 60 subjects with different neurological disorders. Patients underwent a comprehensive set of functional assessments including instrumented gait analysis, computerized postural assessments and clinical walking tests. Determinants of falls were assessed by binary logistic regression analysis and receiver operator characteristics (ROC). The best single determinant of fallers was a step length reduction at slow walking speed reaching an accuracy of 67.2% (ROC AUC: 0.669; p = 0.027). The combination of 4 spatio-temporal gait parameters including step length and parameters of variability and asymmetry were able to classify fallers and non-fallers with an accuracy of 81.0% (ROC AUC: 0.882; p < 0.001). These findings suggest significant differences in specific spatio-temporal gait parameters between fallers and non-fallers among neurological patients. Fall-related impairments were mainly identified for spatio-temporal gait characteristics, suggesting that instrumented, objective gait analysis is an important tool to estimate patients' fall risk. Our results highlight pivotal fall-related walking deficits that might be targeted by future rehabilitative interventions that aim at attenuating falls.


2011 ◽  
Vol 38 (9) ◽  
pp. 866-871 ◽  
Author(s):  
Zhi-Hua HUANG ◽  
Ming-Hong LI ◽  
Yuan-Ye MA ◽  
Chang-Le ZHOU

2021 ◽  
Vol 132 ◽  
pp. S287-S288
Author(s):  
Jianling Ji ◽  
Ryan Schmidt ◽  
Westley Sherman ◽  
Ryan Peralta ◽  
Megan Roytman ◽  
...  

2021 ◽  
Vol 10 (3) ◽  
pp. 188
Author(s):  
Cyril Carré ◽  
Younes Hamdani

Over the last decade, innovative computer technologies and the multiplication of geospatial data acquisition solutions have transformed the geographic information systems (GIS) landscape and opened up new opportunities to close the gap between GIS and the dynamics of geographic phenomena. There is a demand to further develop spatio-temporal conceptual models to comprehensively represent the nature of the evolution of geographic objects. The latter involves a set of considerations like those related to managing changes and object identities, modeling possible causal relations, and integrating multiple interpretations. While conventional literature generally presents these concepts separately and rarely approaches them from a holistic perspective, they are in fact interrelated. Therefore, we believe that the semantics of modeling would be improved by considering these concepts jointly. In this work, we propose to represent these interrelationships in the form of a hierarchical pyramidal framework and to further explore this set of concepts. The objective of this framework is to provide a guideline to orient the design of future generations of GIS data models, enabling them to achieve a better representation of available spatio-temporal data. In addition, this framework aims at providing keys for a new interpretation and classification of spatio-temporal conceptual models. This work can be beneficial for researchers, students, and developers interested in advanced spatio-temporal modeling.


Sign in / Sign up

Export Citation Format

Share Document