Effect of predicted sea level rise scenarios on green turtle (Chelonia mydas) nesting

2021 ◽  
Vol 541 ◽  
pp. 151572
Author(s):  
Bektaş Sönmez ◽  
Sezgin Karaman ◽  
Oguz Turkozan
2015 ◽  
Vol 2 (7) ◽  
pp. 150127 ◽  
Author(s):  
David A. Pike ◽  
Elizabeth A. Roznik ◽  
Ian Bell

Contemporary sea-level rise will inundate coastal habitats with seawater more frequently, disrupting the life cycles of terrestrial fauna well before permanent habitat loss occurs. Sea turtles are reliant on low-lying coastal habitats worldwide for nesting, where eggs buried in the sand remain vulnerable to inundation until hatching. We show that saltwater inundation directly lowers the viability of green turtle eggs ( Chelonia mydas ) collected from the world's largest green turtle nesting rookery at Raine Island, Australia, which is undergoing enigmatic decline. Inundation for 1 or 3 h reduced egg viability by less than 10%, whereas inundation for 6 h reduced viability by approximately 30%. All embryonic developmental stages were vulnerable to mortality from saltwater inundation. Although the hatchlings that emerged from inundated eggs displayed normal physical and behavioural traits, hypoxia during incubation could influence other aspects of the physiology or behaviour of developing embryos, such as learning or spatial orientation. Saltwater inundation can directly lower hatching success, but it does not completely explain the consistently low rates of hatchling production observed on Raine Island. More frequent nest inundation associated with sea-level rise will increase variability in sea turtle hatching success spatially and temporally, due to direct and indirect impacts of saltwater inundation on developing embryos.


Eos ◽  
2020 ◽  
Vol 101 ◽  
Author(s):  
Kate Wheeling

Researchers identify the main sources of uncertainty in projections of global glacier mass change, which is expected to add about 8–16 centimeters to sea level, through this century.


2020 ◽  
Vol 644 ◽  
pp. 33-45
Author(s):  
JM Hill ◽  
PS Petraitis ◽  
KL Heck

Salt marshes face chronic anthropogenic impacts such as relative sea level rise and eutrophication, as well as acute disturbances from tropical storms that can affect the productivity of these important communities. However, it is not well understood how marshes already subjected to eutrophication and sea level rise will respond to added effects of episodic storms such as hurricanes. We examined the interactive effects of nutrient addition, sea level rise, and a hurricane on the growth, biomass accumulation, and resilience of the saltmarsh cordgrass Spartina alterniflora in the Gulf of Mexico. In a microtidal marsh, we manipulated nutrient levels and submergence using marsh organs in which cordgrasses were planted at differing intertidal elevations and measured the impacts of Hurricane Isaac, which occurred during the experiment. Prior to the hurricane, grasses at intermediate and high elevations increased in abundance. After the hurricane, all treatments lost approximately 50% of their shoots, demonstrating that added nutrients and elevation did not provide resistance to hurricane disturbance. At the end of the experiment, only the highest elevations had been resilient to the hurricane, with increased above- and belowground growth. Added nutrients provided a modest increase in above- and belowground growth, but only at the highest elevations, suggesting that only elevation will enhance resilience to hurricane disturbance. These results empirically demonstrate that S. alterniflora in microtidal locations already subjected to submergence stress is less able to recover from storm disturbance and suggests we may be underestimating the loss of northern Gulf Coast marshes due to relative sea level rise.


2019 ◽  
Vol 1 (02) ◽  
pp. 64-67
Author(s):  
Meilisha Putri Pertiwi ◽  
Suci Siti Lathifah

Research on the condition of the nesting habitat of Chelonia mydas (green turtle) in Pangumbahan Beach, Ujung Genteng, South Sukabumi has been carried out. Data retrieval is done 6 times for 2 days, 27-28 November 2017 at 3 observation stations. The abiotic parameters measured include surface temperature and depth of 50 cm, surface humidity and depth of 50 cm, beach width, beach slope, and the size of sand grains. While the biotic parameters measured were density, relative density, the frequency of attendance, and distribution patterns of Pandanus tectorius (sea pandanus) vegetation. Based on the results of data processing, the biophysical conditions in Pangumbahan Beach are still suitable for the Chelonia mydas nesting habitat. It also got clear evidence of the many Chelonia mydas landings during the data collection.


2018 ◽  
Author(s):  
Gideon Aschwanden ◽  
Georgia Warren-Myers ◽  
Franz Fuerst
Keyword(s):  

2020 ◽  
Vol 13 (3) ◽  
pp. 585-591
Author(s):  
Luana Melo ◽  
Isabel Velasco ◽  
Julia Aquino ◽  
Rosangela Rodrigues ◽  
Edris Lopes ◽  
...  

Fibropapillomatosis is a neoplastic disease that affects sea turtles. It is characterized by multiple papillomas, fibropapillomas and cutaneous and/or visceral fibromas. Although its etiology has not been fully elucidated, it is known that there is a strong involvement of an alpha - herpesvirus, but the influence of other factors such as parasites, genetics, chemical carcinogens, contaminants, immunosuppression and ultraviolet radiation may be important in the disease, being pointed out as one of the main causes of a reduction in the green turtle population. Thus, the objective of this article was to describe the morphology of cutaneous fibropapillomas found in specimens of the green turtle (Chelonia mydas), using light and scanning electron microscopy in order to contribute to the mechanism of tumor formation. Microscopically, it presented hyperplastic stromal proliferation and epidermal proliferation with hyperkeratosis. The bulky mass was coated with keratin, with some keratinocyte invaginations, that allowed the keratin to infiltrate from the epidermis into the dermis, forming large keratinized circular spirals. Another fact that we observed was the influence of the inflammation of the tumors caused by ectoparasites.


Sign in / Sign up

Export Citation Format

Share Document