scholarly journals Irrigation water quality influences heavy metal uptake by willows in biosolids

2015 ◽  
Vol 155 ◽  
pp. 31-39 ◽  
Author(s):  
W. Scott Laidlaw ◽  
Alan J.M. Baker ◽  
David Gregory ◽  
Stefan K. Arndt
2021 ◽  
Vol 13 (22) ◽  
pp. 12866
Author(s):  
Yi Tan ◽  
Quanquan Wei ◽  
Bangxi Zhang ◽  
Zijing Zheng ◽  
Jiulan Guo ◽  
...  

Due to the rapid population growth and over-application of fertilizers in the Caohai surrounding farmlands, controlling the non-point source pollution in the Caohai Lakeside Zone is significant for the local ecology balance and human health safety. A total of 54 soil and 24 irrigation water samples were collected in the Caohai Lakeside Zone to evaluate the current status of soil fertility and heavy metal pollution by measuring soil and water heavy metal content and soil physicochemical properties such as soil total nitrogen, total phosphorus, organic matter, and soil pH. These results showed that the total amounts of organic matter, nitrogen, phosphorus, potassium, and effective nutrient content in the Caohai Lakeside Zone were all at a rich level according to Chinese soil nutrient grade standard; the content of lead (Pb), chromium (Cr), cadmium (Cd), mercury (Hg), and arsenic (As) in the soil all exceeds the safety standard of Chinese classification of soil environmental quality assessment. In addition, the over-standard rates of Cd and Cr were 24.1% and 14.8%, respectively. On the whole, the comprehensive quality index (CQI) of the soil in the Caohai Lakeside Zone is 6.48, which is attributed to the heavy Cd pollution and the good soil fertility. The heavy metal content of the irrigation water met the requirements of irrigation water quality. It is feasible to use the irrigation water of Caohai Lake in the actual agricultural production process. Therefore, in terms of the comprehensive management and pollution control of Caohai, special attention should be paid to the control of Cd, Pb, As, and Hg pollution sources.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 267-272 ◽  
Author(s):  
Ken Fukushi ◽  
Duk Chang ◽  
Sam Ghosh

The objective of this research was to investigate the feasibility of developing improved activated sludge cultures capable of removing heavy metals. Cystine, peptone, and β-glycerophosphate (BGP) stimulated metal uptake without the significant reduction of culture viability otherwise experienced in the absence of these chemicals. The cystine-peptone-BGP-grown culture exhibited the highest removal of copper and cadmium of 5.67 and 2.53 mM/g protein, respectively.


2015 ◽  
Vol 3 (2) ◽  
pp. 38 ◽  
Author(s):  
Shashi Kant ◽  
Y.V. Singh ◽  
Lokesh Kumar Jat ◽  
R. Meena ◽  
S.N. Singh

<p>In sustainable groundwater study, it is necessary to assess the quality of groundwater in terms of irrigation purposes. The present study attempts to assess the groundwater quality through Irrigation Water Quality Index (IWQI) in hard-rock aquifer system and sustainable water use in Lahar block, Bhind of district, Madhya Pradesh, India. The quality of ground water in major part of the study area is generally good. In order to understand the shallow groundwater quality, the water samples were collected from 40 tube wells irrigation water. The primary physical and chemical parameters like potential Hydrogen (pH), Total Dissolved Solids (TDS), calcium (Ca<sup>2+</sup>), magnesium (Mg<sup>2+</sup>), sodium (Na<sup>+</sup>), potassium (K<sup>+</sup>), bicarbonate (HCO<sub>3</sub><sup>-</sup>), carbonate (CO<sub>3</sub><sup>2-</sup>), chloride (Cl<sup>-</sup>), and nitrate (NO<sub>3</sub><sup>-</sup>) were analyzed for (irrigation water quality index ) IWQI. The secondary parameters of irrigation groundwater quality indices such as Sodium Adsorption Ratio (SAR), Sodium Soluble Percentage (SSP), Residual Sodium Carbonate (RSC), Permeability Index (PI), and Kellies Ratio (KR) were also derived from the primary parameter for irrigation water quality index (IWQI). The IWQI was classified into excellent to unfit condition of groundwater quality based on their Water Quality Index (WQI). The IWQI (82.5%+15.0%) indicate that slightly unsustainable to good quality of ground water. Due to this quality deterioration of shallow aquifer, an immediate attestation requires for sustainable development.</p>


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Elsiddig Eldaw ◽  
Tao Huang ◽  
Adam Khalifa Mohamed ◽  
Yahaya Mahama

AbstractDeterioration of groundwater quality due to drastic human interventions is rising at an alarming rate particularly in lower- and middle-income countries. Yet, limited research effort has been devoted to monitoring and ascertaining groundwater quality. The present study develops a comprehensive irrigation water quality index (IWQI) for rating water quality of shallow and deep aquifers in North Kurdufan province, Sudan. The new approach is developed to overcome the deficiencies of the existing irrigation indices and coming up with a unified decision for classifying water quality for irrigation purposes. Because of these indices like permeability index (PI), sodium absorption ratio (SAR), etc., depending on specific elements, entirely subjective, as well as the great variations in their results, particularly when classifying water quality. Thus, IWQI is created based on eight indices that are generally used to evaluate irrigation water quality, plus three physicochemical parameters have been proven an impact on water quality. The analytic hierarchy process (AHP) is applied to minimize the subjectivity at assign parameter weights under multiple criteria decision analysis tools (MCDA). The spatial distribution of IWQI agrees with the spatial distribution of the most parameters. The results of our approach reveal that the majority of samples are suitable for irrigation uses for both aquifers except few wells in the confined aquifer. Also, noted that there are very variations in the irrigation indices results for classifying water quality. The comparison result showed that the new index robust, fair calculations and has best classifying of water quality.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 512
Author(s):  
Michiele Gebrehiwet ◽  
Nata T. Tafesse ◽  
Solomon Habtu ◽  
Berhanu F. Alemaw ◽  
Kebabonye Laletsang ◽  
...  

This study evaluates the cause of salinization in an irrigation scheme of 100 ha supplied from a reservoir. The scheme is located in Gumselasa catchment (28 km2), Tigray region, northern Ethiopia. The catchment is underlain by limestone–shale–marl intercalations with dolerite intrusion and some recent sediments. Water balance computation, hydrochemical analyses and irrigation water quality analyses methods were used in this investigation. Surface waters (river and reservoir) and groundwater samples were collected and analyzed. The water table in the irrigated land is ranging 0.2–2 m below the ground level. The majority of groundwater in the effective watershed area and the river and dam waters are fresh and alkaline whereas in the command area the groundwater is dominantly brackish and alkaline. The main hydrochemical facies in the groundwater in the effective watershed area are Ca-Na-SO4-HCO3, Ca-Na- HCO3-SO4, and Ca-Na-Mg-SO4-HCO3. The river and dam waters are Mg-Na-HCO3-SO4 and HCO3-SO4-Cl types, respectively. In the command area the main hydrochemical facies in the groundwater are Ca-Na-HCO3-SO4 and Ca-Na-Mg-SO4-HCO3. Irrigation water quality analyses revealed that salinity and toxicity hazards increase from the effective watershed to the irrigated land following the direction of the water flow. The results also showed that the analyzed waters for irrigation purpose had no sodicity hazard. The major composition controlling mechanisms in the groundwater chemistry was identified as the dissolution of carbonate minerals, silicate weathering, and cation exchange. One of the impacts of the construction of the dam in the hydrologic environment of the catchment is on its groundwater potential. The dam is indirectly recharging the aquifers and enhances the groundwater potential of the area. This increment of availability of groundwater enhanced dissolution of carbonate minerals (calcite, dolomite, and gypsum), silicate weathering and cation exchange processes, which are the main causes of salinity in the irrigated land. The rising of the brackish groundwater combined with insufficient leaching contributed to secondary salinization development in the irrigated land. Installation of surface and subsurface drainage systems and planting salt tolerant (salt loving) plants are recommended to minimize the risk of salinization and salt accumulation in the soils of the irrigated land.


1999 ◽  
Vol 7 (1) ◽  
pp. 81-90 ◽  
Author(s):  
G. Vallini ◽  
F. Vaccari ◽  
A. Pera ◽  
M. Agnolucci ◽  
S. Scatena ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document