Fabrication strategy of complicated Al2O3-Si3N4 functionally graded materials by stereolithography 3D printing

2020 ◽  
Vol 40 (15) ◽  
pp. 5797-5809 ◽  
Author(s):  
Hongyu Xing ◽  
Bin Zou ◽  
Xiaoyan Liu ◽  
Xinfeng Wang ◽  
Chuanzhen Huang ◽  
...  
Materials ◽  
2017 ◽  
Vol 10 (12) ◽  
pp. 1368 ◽  
Author(s):  
Uwe Scheithauer ◽  
Steven Weingarten ◽  
Robert Johne ◽  
Eric Schwarzer ◽  
Johannes Abel ◽  
...  

2019 ◽  
Vol 5 (5) ◽  
pp. eaav5790 ◽  
Author(s):  
Xiao Kuang ◽  
Jiangtao Wu ◽  
Kaijuan Chen ◽  
Zeang Zhao ◽  
Zhen Ding ◽  
...  

Three-dimensional (3D) printing or additive manufacturing, as a revolutionary technology for future advanced manufacturing, usually prints parts with poor control of complex gradients for functional applications. We present a single-vat grayscale digital light processing (g-DLP) 3D printing method using grayscale light patterns and a two-stage curing ink to obtain functionally graded materials with the mechanical gradient up to three orders of magnitude and high resolution. To demonstrate the g-DLP, we show the direct fabrication of complex 2D/3D lattices with controlled buckling and deformation sequence, negative Poisson’s ratio metamaterial, presurgical models with stiffness variations, composites for 4D printing, and anti-counterfeiting 3D printing.


Author(s):  
Uwe Scheithauer ◽  
Steven Weingarten ◽  
Robert Johne ◽  
Eric Schwarzer ◽  
Johannes Abel ◽  
...  

In our study we investigated the additive manufacturing (AM) of ceramic-based Functionally Graded Materials (FGM) by the direct AM technology Thermoplastic 3D-Printing (T3DP). Zirconia components with a varying microstructure were additively manufactured by using thermoplastic suspensions with different contents of pore forming agents (PFA) and were co-sintered defect-free. Different materials were investigated concerning their suitability as PFA for the T3DP process. Different zirconia-based suspensions were prepared and used for AM of single- and multi-material test components. All samples were sintered defect-free and in the end we could realize a brick wall-like component consisting of dense (<1% porosity) and porous (approx. 5% porosity) zirconia areas to combine different properties in one component. The T3DP opens the door to AM of further ceramic-based 4D-components like multi-color or multi-material, especially multi-functional components.


Author(s):  
Carlos Alberto Dutra Fraga Filho ◽  
Fernando César Meira Menandro ◽  
Rivânia Hermógenes Paulino de Romero ◽  
Juan Sérgio Romero Saenz

Sign in / Sign up

Export Citation Format

Share Document