Novel single phase (Ti0.2W0.2Ta0.2Mo0.2V0.2)C0.8 high entropy carbide using ball milling followed by reactive spark plasma sintering

Author(s):  
Vasanthakumar K. ◽  
Revathi Gorle ◽  
Ariharan S ◽  
Srinivasa Rao Bakshi
Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1268 ◽  
Author(s):  
Natalia Shkodich ◽  
Alexey Sedegov ◽  
Kirill Kuskov ◽  
Sergey Busurin ◽  
Yury Scheck ◽  
...  

For the first time, a powder of refractory body-centered cubic (bcc) HfTaTiNbZr-based high-entropy alloy (RHEA) was prepared by short-term (90 min) high-energy ball milling (HEBM) followed by spark plasma sintering (SPS) at 1300 °C for 10 min and the resultant bulk material was characterized by XRD and SEM/EDX. The material showed ultra-high Vickers hardness (10.7 GPa) and a density of 9.87 ± 0.18 g/cm³ (98.7%). Our alloy was found to consist of HfZrTiTaNb-based solid solution with bcc structure as a main phase, a hexagonal closest packed (hcp) Hf/Zr-based solid solution, and Me2Fe phases (Me = Hf, Zr) as minor admixtures. Principal elements of the HEA phase were uniformly distributed over the bulk of HfTaTiNbZr-based alloy. Similar alloys synthesized without milling or in the case of low-energy ball milling (LEBM, 10 h) consisted of a bcc HEA and a Hf/Zr-rich hcp solid solution; in this case, the Vickers hardness of such alloys was found to have a value of 6.4 GPa and 5.8 GPa, respectively.


2020 ◽  
Vol 46 (11) ◽  
pp. 19008-19014
Author(s):  
D.O. Moskovskikh ◽  
S. Vorotilo ◽  
A.S. Sedegov ◽  
K.V. Kuskov ◽  
K.V. Bardasova ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1489
Author(s):  
Alexander S. Rogachev ◽  
Nicholas A. Kochetov ◽  
Anna V. Panteleeva ◽  
Kirill V. Kuskov ◽  
Dmitry Yu. Kovalev ◽  
...  

Nanocrystalline powder of the CoCrFeNiAl high-entropy alloy was produced by high-energy ball milling (HEBM) and consolidated by spark plasma sintering (SPS). Microstructure and crystal structure transformations occurring in the course of HEBM and SPS processes were explored by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-Rays Diffraction (XRD) methods. Synthesized materials showed a microhardness of 4000–6000 MPa and electrical resistivity of 0.2 mΩ⋅cm at room temperature.


2020 ◽  
Vol 46 (5) ◽  
pp. 6906-6913 ◽  
Author(s):  
Joshua Gild ◽  
Andrew Wright ◽  
Kathleen Quiambao-Tomko ◽  
Mingde Qin ◽  
John A. Tomko ◽  
...  

Ceramics ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 108-120
Author(s):  
Simone Barbarossa ◽  
Roberto Orrù ◽  
Valeria Cannillo ◽  
Antonio Iacomini ◽  
Sebastiano Garroni ◽  
...  

Due to their inherent chemical complexity and their refractory nature, the obtainment of highly dense and single-phase high entropy (HE) diborides represents a very hard target to achieve. In this framework, homogeneous (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2, (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2, and (Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2 ceramics with high relative densities (97.4, 96.5, and 98.2%, respectively) were successfully produced by spark plasma sintering (SPS) using powders prepared by self-propagating high-temperature synthesis (SHS). Although the latter technique did not lead to the complete conversion of initial precursors into the prescribed HE phases, such a goal was fully reached after SPS (1950 °C/20 min/20 MPa). The three HE products showed similar and, in some cases, even better mechanical properties compared to ceramics with the same nominal composition attained using alternative processing methods. Superior Vickers hardness and elastic modulus values were found for the (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2 and the (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2 systems, i.e., 28.1 GPa/538.5 GPa and 28.08 GPa/498.1 GPa, respectively, in spite of the correspondingly higher residual porosities (1.2 and 2.2 vol.%, respectively). In contrast, the third ceramic, not containing tantalum, displayed lower values of these two properties (25.1 GPa/404.5 GPa). However, the corresponding fracture toughness (8.84 MPa m1/2) was relatively higher. This fact can be likely ascribed to the smaller residual porosity (0.3 vol.%) of the sintered material.


Sign in / Sign up

Export Citation Format

Share Document