Vortex shedding and aerodynamic forces on a circular cylinder in linear shear flow at subcritical Reynolds number

2007 ◽  
Vol 23 (5) ◽  
pp. 703-714 ◽  
Author(s):  
S. Cao ◽  
S. Ozono ◽  
K. Hirano ◽  
Y. Tamura
1980 ◽  
Vol 101 (4) ◽  
pp. 721-735 ◽  
Author(s):  
Masaru Kiya ◽  
Hisataka Tamura ◽  
Mikio Arie

The frequency of vortex shedding from a circular cylinder in a uniform shear flow and the flow patterns around it were experimentally investigated. The Reynolds number Re, which was defined in terms of the cylinder diameter and the approaching velocity at its centre, ranged from 35 to 1500. The shear parameter, which is the transverse velocity gradient of the shear flow non-dimensionalized by the above two quantities, was varied from 0 to 0·25. The critical Reynolds number beyond which vortex shedding from the cylinder occurred was found to be higher than that for a uniform stream and increased approximately linearly with increasing shear parameter when it was larger than about 0·06. In the Reynolds-number range 43 < Re < 220, the vortex shedding disappeared for sufficiently large shear parameters. Moreover, in the Reynolds-number range 100 < Re < 1000, the Strouhal number increased as the shear parameter increased beyond about 0·1.


2002 ◽  
Vol 31 (1) ◽  
pp. 1-24 ◽  
Author(s):  
A. Mukhopadhyay ◽  
P. Venugopal ◽  
S.P. Vanka

2000 ◽  
Vol 25 (4) ◽  
pp. 85_53-85_62
Author(s):  
Shuyang Cao ◽  
Kimitaka Hirano ◽  
Shigehira Ozono ◽  
Yasuo Wakasugi

1995 ◽  
Vol 287 ◽  
pp. 151-171 ◽  
Author(s):  
Hiroshi Sakamoto ◽  
Hiroyuki Haniu

Experiments to investigate the formation mechanism and frequency of vortex shedding from a sphere in uniform shear flow were conducted in a water channel using flow visualization and velocity measurement. The Reynolds number, defined in terms of the sphere diameter and approach velocity at its centre, ranged from 200 to 3000. The shear parameter K, defined as the transverse velocity gradient of the shear flow non-dimensionalized by the above two parameters, was varied from 0 to 0.25. The critical Reynolds number beyond which vortex shedding from the sphere occurred was found to be lower than that for uniform flow and decreased approximately linearly with increasing shear parameter. Also, the Strouhal number of the hairpin-shaped vortex loops became larger than that for uniform flow and increased as the shear parameter increased.The formation mechanism and the structure of vortex shedding were examined on the basis of series of photographs and subsequent image processing using computer graphics. The range of Reynolds number in the present investigation, extending up to 3000, could be classified into three regions on the basis of this study, and it was observed that the wake configuration did not differ substantially from that for uniform flow. Also, unlike the detachment point of vortex loops in uniform flow, which was irregularly located along the circumference of the sphere, the detachment point in shear flow was always on the high-velocity side.


2020 ◽  
Vol 23 (12) ◽  
pp. 2679-2693 ◽  
Author(s):  
Huan Li ◽  
Xuhui He ◽  
Hanfeng Wang ◽  
Si Peng ◽  
Shuwei Zhou ◽  
...  

Experiments on the aerodynamics of a two-dimensional bluff body simplified from a China high-speed train in crosswinds were carried out in a wind tunnel. Effects of wind angle of attack α varying in [−20°, 20°] were investigated at a moderate Reynolds number Re = 9.35 × 104 (based on the height of the model). Four typical behaviors of aerodynamics were identified. These behaviors are attributed to the flow structure around the upper and lower halves of the model changing from full to intermittent reattachment, and to full separation with a variation in α. An alternate transition phenomenon, characterized by an alteration between large- and small-amplitude aerodynamic fluctuations, was detected. The frequency of this alteration is about 1/10 of the predominant vortex shedding. In the intervals of the large-amplitude behavior, aerodynamic forces fluctuate periodically with a strong span-wise coherence, which are caused by the anti-symmetric vortex shedding along the stream-wise direction. On the contrary, the aerodynamic forces fluctuating at small amplitudes correspond to a weak span-wise coherence, which are ascribed to the symmetric vortex shedding from the upper and lower halves of the model. Generally, the mean amplitude of the large-amplitude mode is 3 times larger than that of the small one. Finally, the effects of Reynolds number were examined within Re = [9.35 × 104, 2.49 × 105]. Strong Reynolds number dependence was observed on the model with two rounded upper corners.


CFD letters ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 51-68
Author(s):  
Nurul Azihan Ramli ◽  
Azlin Mohd Azmi ◽  
Ahmad Hussein Abdul Hamid ◽  
Zainal Abidin Kamarul Baharin ◽  
Tongming Zhou

Flow over bluff bodies produces vortex shedding in their wake regions, leading to structural failure from the flow-induced forces. In this study, a passive flow control method was explored to suppress the vortex shedding from a circular cylinder that causes many problems in engineering applications. Perforated shrouds were used to control the vortex shedding of a circular cylinder at Reynolds number, Re = 200. The shrouds were of non-uniform and uniform holes with 67% porosity. The spacing gap ratio between the shroud and the cylinder was set at 1.2, 1.5, 2, and 2.2. The analysis was conducted using ANSYS Fluent using a viscous laminar model. The outcomes of the simulation of the base case were validated with existing studies. The drag coefficient, Cd, lift coefficient, Cl and the Strouhal number, St, as well as vorticity contours, velocity contours, and pressure contours were examined. Vortex shedding behind the shrouded cylinders was observed to be suppressed and delayed farther downstream with increasing gap ratio. The effect was significant for spacing ratio greater than 2.0. The effect of hole types: uniform and non-uniform holes, was also effective at these spacing ratios for the chosen Reynolds number of 200. Specifically, a spacing ratio of 1.2 enhanced further the vortex intensity and should be avoided.


2006 ◽  
Vol 129 (3) ◽  
pp. 256-264 ◽  
Author(s):  
F. M. Mahfouz

In this paper laminar forced convection associated with the cross-flow of micropolar fluid over a horizontal heated circular cylinder is investigated. The conservation equations of mass, linear momentum, angular momentum and energy are solved to give the details of flow and thermal fields. The flow and thermal fields are mainly influenced by Reynolds number, Prandtl number and material parameters of micropolar fluid. The Reynolds number is considered up to 200 while the Prandtl number is fixed at 0.7. The dimensionless vortex viscosity is the only material parameter considered in this study and is selected in the range from 0 to 5. The study has shown that generally the mean heat transfer decreases as the vortex viscosity increases. The results have also shown that both the natural frequency of vortex shedding and the amplitude of oscillating lift force experience clear reduction as the vortex viscosity increases. Moreover, the study showed that there is a threshold value for vortex viscosity above which the flow over the cylinder never responds to perturbation and stays symmetric without vortex shedding. Regarding drag coefficient, the results have revealed that within the selected range of controlling parameters the drag coefficient does not show a clear trend as the vortex viscosity increases.


Sign in / Sign up

Export Citation Format

Share Document