Flow characteristics around a circular cylinder subjected to vortex-induced vibration near a plane boundary

2016 ◽  
Vol 65 ◽  
pp. 257-277 ◽  
Author(s):  
Shih-Chun Hsieh ◽  
Ying Min Low ◽  
Yee-Meng Chiew
2007 ◽  
Vol 2007.56 (0) ◽  
pp. 307-308
Author(s):  
Yosuke ARAKAWA ◽  
Kyohei WATANABE ◽  
Shimpei OKAYASU ◽  
Kotaro SATO ◽  
Toshihiko SHAKOUCHI

Author(s):  
Ming Zhao ◽  
Liang Cheng

Two-degree of freedom vortex-induced vibration (VIV) of a circular cylinder close to a plane boundary is investigated numerically. Two-dimensional (2D) Reynolds-Averaged Navier-Stokes Equations (RANS) and structural dynamic equation are solved using a finite element method (FEM). If the cylinder is initially very close to the plane boundary, it will be bounced back after it collides with boundary. It is assumed that the bouncing back only alters the cylinder’s velocity component perpendicular to the boundary. After it is bounced back, the cylinder’s velocity are determined by Uc = Uc′, Vc = −bVc′, where Uc and Vc are the cylinder’s velocity parallel to the boundary and that perpendicular to the boundary respectively, Uc′ and Vc′ are the velocities before cylinder is bounced back, b is the bounce back coefficient which is between 0 and 1. Numerical results of the vibration amplitude and frequency of a one-degree-of-freedom vibration (transverse to flow direction) of a circular cylinder close to a plane boundary are compared with the experimental data by Yang et al. [1]. The overall trends of the variation of the VIV amplitude with the reduced velocity were found to be in agreement with the experimental results. The calculated amplitude is smaller than the measured data. The frequency of the vibration increases with the increase of reduced velocity. The calculated vibrating frequency agrees well with the experimental data. It was found in this study that vortex-induced vibration (VIV) occurs even when the gap between the cylinder and the plane boundary is zero. This contradicts a perception that VIV would not occur for a pipeline close to the seabed with a gap ratio smaller than 0.3, this is because it was understood that vortex shedding would have been suppressed if the gap between the cylinder and the plane boundary is less than about 0.3 times of cylinder diameter for a fixed cylinder. Two-degree-of-freedom VIV of a circular cylinder close to a plane boundary is studied. The XY-trajectories, the frequency and the amplitude of the vibration are studied. The effects of the cylinder-to-boundary gap and the bounce back coefficient on VIV and the link between the vortex shedding mode and the VIV are discussed.


2017 ◽  
Vol 129 ◽  
pp. 265-278 ◽  
Author(s):  
Shih-Chun Hsieh ◽  
Ying Min Low ◽  
Yee-Meng Chiew

2016 ◽  
Author(s):  
Adnan Munir ◽  
Ming Zhao ◽  
Helen Wu

This paper presents a numerical study of flow around an elastically mounted circular cylinder in close proximity to a plane boundary vibrating in the transverse and inline directions in an oscillatory flow. The Reynolds-Averaged Navier-Stokes (RANS) equations and the SST k-ω turbulent equations are solved using the Arbitrary Langrangian-Eulerian (ALE) scheme and Petrov-Galerkin Finite Element Method for simulating the flow. The equation of motion is solved using the fourth-order Runge-Kutta method to find the displacements of the cylinder in the transverse and inline directions. The numerical model is validated against the previous results of vortex-induced vibration of an isolated circular cylinder in both cross-flow and inline directions. The flow model is further extended to study the vortex-induced vibration of a cylinder near a plane boundary with a very small gap ratio (e/D) of 0.01, with D and e being the diameter and the gap between the cylinder and the plane boundary, respectively. Simulations are carried out for two Keulegan-Carpenter (KC) numbers of 5 and 10 and a wide range of reduced velocities. It is observed that both the KC number and the reduced velocity affect the vibration of the cylinder significantly.


2009 ◽  
Vol 135 (7) ◽  
pp. 697-716 ◽  
Author(s):  
Wei-Jung Lin ◽  
Chang Lin ◽  
Shih-Chun Hsieh ◽  
Subhasish Dey

2017 ◽  
Vol 34 (2) ◽  
pp. 177-191
Author(s):  
M. J. Chern ◽  
G. T. Lu ◽  
Y. H. Kuan ◽  
S. Chakraborty ◽  
G. Nugroho ◽  
...  

AbstractVortex-induced vibration (VIV) is an important physical phenomenon as one design a riser or a cylindrical structure in ocean. As the riser or the cylindrical structure is adjacent to a seabed, the boundary effect on VIV is not fully understood yet. The direct-forcing immersed boundary (DFIB) method is used to investigate a two-degree-of-freedom VIV of a flexible supported circular cylinder adjacent to a plane boundary in this study. Furthermore, the effect of the VIV of cylinder on skin friction of the plane boundary is investigated. The effects of varying reduced velocity and gap ratio on VIV are discussed. Only a single vortex street is found when the cylinder is close to plane boundary. Hydrodynamic coefficients of the freely vibrating cylinder are analyzed in time and spectral domains. Furthermore, nearly round oval-shaped motion is observed as the so-called lock-in phenomenon occurs. The skin friction of the plane boundary is predicted by the DFIB model. Results show that the vibrating cylinder in the boundary layer flow can reduce the friction effectively. This proposed DFIB model can be useful for the investigation of VIV of the structures under the plane boundary effect even for a small gap between the cylinder and the boundary.


Sign in / Sign up

Export Citation Format

Share Document