Mixing and heat transfer of highly viscous food products with a continuous chaotic duct flow

2009 ◽  
Vol 95 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Guy Metcalfe ◽  
Daniel Lester
1988 ◽  
Vol 8 (2) ◽  
pp. 141-142
Author(s):  
Dean Burfoot ◽  
Colin Bailey
Keyword(s):  

1967 ◽  
Vol 89 (2) ◽  
pp. 163-167 ◽  
Author(s):  
E. G. Filetti ◽  
W. M. Kays

Experimental data are presented for local heat transfer rates near the entrance to a flat duct in which there is an abrupt symmetrical enlargement in flow cross section. Two enlargement area ratios are considered, and Reynolds numbers, based on duct hydraulic diameter, varied from 70,000 to 205,000. It is found that such a flow is characterized by a long stall on one side and a short stall on the other. Maximum heat transfer occurs in both cases at the point of reattachment, followed by a decay toward the values for fully developed duct flow. Empirical equations are given for the Nusselt number at the reattachment point, correlated as functions of duct Reynolds number and enlargement ratio.


1976 ◽  
Vol 19 (3) ◽  
pp. 0577-0583 ◽  
Author(s):  
S. Srinivasa Murthy ◽  
M. V. Krishna Murthy ◽  
A. Ramachandran
Keyword(s):  

1974 ◽  
Vol 17 (4) ◽  
pp. 0769-0773 ◽  
Author(s):  
S. Srinivasa Murthy ◽  
M. V. Krishna Murthy ◽  
A. Ramachandran

1979 ◽  
Vol 101 (2) ◽  
pp. 211-216 ◽  
Author(s):  
N. Cur ◽  
E. M. Sparrow

The heat transfer and pressure drop characteristics for an array of colinear, equally spaced plates aligned parallel to the flow in a flat rectangular duct have been studied experimentally. The periodic interruptions (i.e., the gaps between the plates) preclude the attainment of hydrodynamic and thermal development of the type that is encountered in conventional duct flows, but a periodic fully developed regime can exist. Measurements of the heat transfer coefficients for the successive plates of the array affirmed the periodically developed regime and demonstrated the developmental pattern leading to its attainment. The thickness of the plates in the array was varied parametrically. In general, the Nusselt number increases with plate thickness. Thickness-related increases in the fully developed Nusselt number of up to 65 percent were encountered. The presence of the interruptions serves to augment the heat transfer coefficients. In the fully turbulent regime, the heat transfer coefficients are on the order of twice those for a conventional duct flow. The pressure drop also increases with the plate thickness.


1995 ◽  
Vol 117 (2) ◽  
pp. 289-295 ◽  
Author(s):  
N. Ghariban ◽  
A. Haji-Sheikh ◽  
S. M. You

A two-parameter variational method is introduced to calculate pressure drop and heat transfer for turbulent flow in ducts. The variational method leads to a Galerkin-type solution for the momentum and energy equations. The method uses the Prandtl mixing length theory to describe turbulent shear stress. The Van Driest model is compared with experimental data and incorporated in the numerical calculations. The computed velocity profiles, pressure drop, and heat transfer coefficient are compared with the experimental data of various investigators for fully developed turbulent flow in parallel plate ducts and pipes. This analysis leads to development of a Green’s function useful for solving a variety of conjugate heat transfer problems.


Sign in / Sign up

Export Citation Format

Share Document