Physical properties of extruded corn grits with corn fibre by CO2 injection extrusion

2013 ◽  
Vol 116 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Yuan-Yuan Wang ◽  
Gi-Hyung Ryu
Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 327 ◽  
Author(s):  
Qian Wang ◽  
Shenglai Yang ◽  
Haishui Han ◽  
Lu Wang ◽  
Kun Qian ◽  
...  

The petrophysical properties of ultra-low permeability sandstone reservoirs near the injection wells change significantly after CO2 injection for enhanced oil recovery (EOR) and CO2 storage, and different CO2 displacement methods have different effects on these changes. In order to provide the basis for selecting a reasonable displacement method to reduce the damage to these high water cut reservoirs near the injection wells during CO2 injection, CO2-formation water alternate (CO2-WAG) flooding and CO2 flooding experiments were carried out on the fully saturated formation water cores of reservoirs with similar physical properties at in-situ reservoir conditions (78 °, 18 MPa), the similarities and differences of the changes in physical properties of the cores before and after flooding were compared and analyzed. The measurement results of the permeability, porosity, nuclear magnetic resonance (NMR) transversal relaxation time (T2) spectrum and scanning electron microscopy (SEM) of the cores show that the decrease of core permeability after CO2 flooding is smaller than that after CO2-WAG flooding, with almost unchanged porosity in both cores. The proportion of large pores decreases while the proportion of medium pores increases, the proportion of small pores remains almost unchanged, the distribution of pore size of the cores concentrates in the middle. The changes in range and amplitude of the pore size distribution in the core after CO2 flooding are less than those after CO2-WAG flooding. After flooding experiments, clay mineral, clastic fines and salt crystals adhere to some large pores or accumulate at throats, blocking the pores. The changes in core physical properties are the results of mineral dissolution and fines migration, and the differences in these changes under the two displacement methods are caused by the differences in three aspects: the degree of CO2-brine-rock interaction, the radius range of pores where fine migration occurs, the power of fine migration.


1976 ◽  
Vol 32 ◽  
pp. 365-377 ◽  
Author(s):  
B. Hauck
Keyword(s):  

The Ap stars are numerous - the photometric systems tool It would be very tedious to review in detail all that which is in the literature concerning the photometry of the Ap stars. In my opinion it is necessary to examine the problem of the photometric properties of the Ap stars by considering first of all the possibility of deriving some physical properties for the Ap stars, or of detecting new ones. My talk today is prepared in this spirit. The classification by means of photoelectric photometric systems is at the present time very well established for many systems, such as UBV, uvbyβ, Vilnius, Geneva and DDO systems. Details and methods of classification can be found in Golay (1974) or in the proceedings of the Albany Colloquium edited by Philip and Hayes (1975).


Author(s):  
Frederick A. Murphy ◽  
Alyne K. Harrison ◽  
Sylvia G. Whitfield

The bullet-shaped viruses are currently classified together on the basis of similarities in virion morphology and physical properties. Biologically and ecologically the member viruses are extremely diverse. In searching for further bases for making comparisons of these agents, the nature of host cell infection, both in vivo and in cultured cells, has been explored by thin-section electron microscopy.


Author(s):  
K.P.D. Lagerlof

Although most materials contain more than one phase, and thus are multiphase materials, the definition of composite materials is commonly used to describe those materials containing more than one phase deliberately added to obtain certain desired physical properties. Composite materials are often classified according to their application, i.e. structural composites and electronic composites, but may also be classified according to the type of compounds making up the composite, i.e. metal/ceramic, ceramic/ceramie and metal/semiconductor composites. For structural composites it is also common to refer to the type of structural reinforcement; whisker-reinforced, fiber-reinforced, or particulate reinforced composites [1-4].For all types of composite materials, it is of fundamental importance to understand the relationship between the microstructure and the observed physical properties, and it is therefore vital to properly characterize the microstructure. The interfaces separating the different phases comprising the composite are of particular interest to understand. In structural composites the interface is often the weakest part, where fracture will nucleate, and in electronic composites structural defects at or near the interface will affect the critical electronic properties.


Author(s):  
James Mark ◽  
Kia Ngai ◽  
William Graessley ◽  
Leo Mandelkern ◽  
Edward Samulski ◽  
...  
Keyword(s):  

1982 ◽  
Vol 85 (1) ◽  
pp. 257-263 ◽  
Author(s):  
A. Graja ◽  
M. Przybylski ◽  
B. Butka ◽  
R. Swietlik

2013 ◽  
Author(s):  
Kristina F. Pattison ◽  
Jennifer R. Laude ◽  
Thomas R. Zentall
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document