Synchronization of fractional-order spatiotemporal complex-valued neural networks in finite-time interval and its application

2021 ◽  
Vol 358 (16) ◽  
pp. 8207-8225
Author(s):  
Xiaona Song ◽  
Xiangliang Sun ◽  
Jingtao Man ◽  
Shuai Song ◽  
Qingtao Wu
2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Weiwei Zhang ◽  
Jinde Cao ◽  
Ahmed Alsaedi ◽  
Fuad E. Alsaadi

Finite-time synchronization for a class of fractional-order delayed neural networks with fractional order α, 0<α≤1/2 and 1/2<α<1, is investigated in this paper. Through the use of Hölder inequality, generalized Bernoulli inequality, and inequality skills, two sufficient conditions are considered to ensure synchronization of fractional-order delayed neural networks in a finite-time interval. Numerical example is given to verify the feasibility of the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Li Liang

This paper is concerned with the problem of finite-time boundedness for a class of delayed Markovian jumping neural networks with partly unknown transition probabilities. By introducing the appropriate stochastic Lyapunov-Krasovskii functional and the concept of stochastically finite-time stochastic boundedness for Markovian jumping neural networks, a new method is proposed to guarantee that the state trajectory remains in a bounded region of the state space over a prespecified finite-time interval. Finally, numerical examples are given to illustrate the effectiveness and reduced conservativeness of the proposed results.


2021 ◽  
pp. 1-11
Author(s):  
Wenbin Jin ◽  
Wenxia Cui ◽  
Zhenjie Wang

Finite-time synchronization is concerned for the fractional-order complex-valued fuzzy cellular neural networks (FOCVFCNNs) with leakage delay and time-varying delays. Without using the usual complex-valued system decomposition method, this paper designs the different forms of the controllers by using 2-norm. And we construct the appropriate Lyapunov functional and apply inequality analytical techniques, some new sufficient conditions are obtained to ensure finite-time synchronization of the FOCVFCNNs. The upper bound of setting-time function is obtained. Finally, numerical examples are examined to illustrate the effectiveness of the analytical results.


Author(s):  
Liping Chen ◽  
Wei Pan ◽  
Ranchao Wu ◽  
Yigang He

Since Lyapunov method has not been well developed for fractional-order systems, stability of fractional-order nonlinear delayed systems remains a formidable problem. In this letter, finite-time stability of a class of fractional-order nonlinear delayed systems with order between 0 and 1 is addressed. By using the technique of inequalities, a new and simple delay-independent sufficient condition guaranteeing stability of fractional-order nonlinear delayed system over the finite time interval is obtained. Numerical examples are presented to demonstrate the validity and feasibility of the obtained results.


Sign in / Sign up

Export Citation Format

Share Document