scholarly journals New Methods of Finite-Time Synchronization for a Class of Fractional-Order Delayed Neural Networks

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Weiwei Zhang ◽  
Jinde Cao ◽  
Ahmed Alsaedi ◽  
Fuad E. Alsaadi

Finite-time synchronization for a class of fractional-order delayed neural networks with fractional order α, 0<α≤1/2 and 1/2<α<1, is investigated in this paper. Through the use of Hölder inequality, generalized Bernoulli inequality, and inequality skills, two sufficient conditions are considered to ensure synchronization of fractional-order delayed neural networks in a finite-time interval. Numerical example is given to verify the feasibility of the theoretical results.

2021 ◽  
pp. 1-11
Author(s):  
Wenbin Jin ◽  
Wenxia Cui ◽  
Zhenjie Wang

Finite-time synchronization is concerned for the fractional-order complex-valued fuzzy cellular neural networks (FOCVFCNNs) with leakage delay and time-varying delays. Without using the usual complex-valued system decomposition method, this paper designs the different forms of the controllers by using 2-norm. And we construct the appropriate Lyapunov functional and apply inequality analytical techniques, some new sufficient conditions are obtained to ensure finite-time synchronization of the FOCVFCNNs. The upper bound of setting-time function is obtained. Finally, numerical examples are examined to illustrate the effectiveness of the analytical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Li Liang

This paper is concerned with the problem of finite-time boundedness for a class of delayed Markovian jumping neural networks with partly unknown transition probabilities. By introducing the appropriate stochastic Lyapunov-Krasovskii functional and the concept of stochastically finite-time stochastic boundedness for Markovian jumping neural networks, a new method is proposed to guarantee that the state trajectory remains in a bounded region of the state space over a prespecified finite-time interval. Finally, numerical examples are given to illustrate the effectiveness and reduced conservativeness of the proposed results.


2011 ◽  
Vol 34 (7) ◽  
pp. 841-849 ◽  
Author(s):  
Shuping He ◽  
Fei Liu

In this paper we study the robust control problems with respect to the finite-time interval of uncertain non-linear Markov jump systems. By means of Takagi–Sugeno fuzzy models, the overall closed-loop fuzzy dynamics are constructed through selected membership functions. By using the stochastic Lyapunov–Krasovskii functional approach, a sufficient condition is firstly established on the stochastic robust finite-time stabilization. Then, in terms of linear matrix inequalities techniques, the sufficient conditions on the existence of the stochastic finite-time controller are presented and proved. Finally, the design problem is formulated as an optimization one. The simulation results illustrate the effectiveness of the proposed approaches.


Sign in / Sign up

Export Citation Format

Share Document