Sorption potential of rice husk for the removal of 2,4-dichlorophenol from aqueous solutions: Kinetic and thermodynamic investigations

2006 ◽  
Vol 128 (1) ◽  
pp. 44-52 ◽  
Author(s):  
Mubeena Akhtar ◽  
M.I. Bhanger ◽  
Shahid Iqbal ◽  
S. Moosa Hasany
Author(s):  
Junfeng Liu ◽  
Xiuqing Gao ◽  
Xiaosu Wu ◽  
Ziyang Zhang ◽  
Xiaoran Zhang

2012 ◽  
Vol 60 (2) ◽  
pp. 185-189 ◽  
Author(s):  
Mohammad Arifur Rahman ◽  
S. M. Ruhul Amin ◽  
A. M. Shafiqul Alam

The possible utilization of rice husk activated carbon as an adsorbent for the removal of methylene blue dye from aqueous solutions has been investigated. In this study, activated carbons, prepared from low-cost rice husk by sulfuric acid and zinc chloride activation, were used as the adsorbent for the removal of methylene blue, a basic dye, from aqueous solutions. Effects of various experimental parameters, such as adsorbent dosage and particle size, initial dye concentration, pH and flow rate were investigated in column process. The maximum uptakes of methylene blue by activated rice husk carbon at optimized conditions (particle sizes: 140 ?m; Flow rate: 1.4 mL/min; pH: 10.0; initial volume of methylene blue: 50 mL and initial concentration of methylene blue: 4.0 mg/L etc.) were found to 97.15%. The results indicate that activated carbon of rice husk could be employed as low-cost alternatives to commercial activated carbon in waste water treatment for the removal of basic dyes. This low cost and effective removal method may provide a promising solution for the removal of crystal violet dye from wastewater.DOI: http://dx.doi.org/10.3329/dujs.v60i2.11491 Dhaka Univ. J. Sci. 60(2): 185-189, 2012 (July)


2015 ◽  
Vol 73 (5) ◽  
pp. 1122-1128 ◽  
Author(s):  
Yaxin Li ◽  
Xian Zhang ◽  
Ruiguang Yang ◽  
Guiying Li ◽  
Changwei Hu

The treatment of dye wastewater by activated carbon (AC) prepared from rice husk residue wastes was studied. Batch adsorption studies were conducted to investigate the effects of contact time, initial concentration (50–450 mg/L), pH (3–11) and temperature (30–70 °C) on the removal of methylene blue (MB), neutral red, and methyl orange. Kinetic investigation revealed that the adsorption of dyes followed pseudo-second-order kinetics. The results suggested that AC was effective to remove dyes, especially MB, from aqueous solutions. Desorption studies found that chemisorption by the adsorbent might be the major mode of dye removal. Fourier transform infrared results suggested that dye molecules were likely to combine with the O–H and P=OOH groups of AC.


2018 ◽  
Vol 5 (5) ◽  
pp. 172382 ◽  
Author(s):  
Wei Guo ◽  
Shujuan Wang ◽  
Yunkai Wang ◽  
Shaoyong Lu ◽  
Yue Gao

A magnetically modified rice husk biochar (MBC) was successfully prepared by a hydrothermal method from original biochar (BC) and subsequently used to remove phenanthrene (PHE) from aqueous solutions. The porosity, specific surface area and hydrophobicity of BC were significantly improved (approx. two times) after magnetic modification. The adsorption data fitted well to pseudo-second-order kinetic and Langmuir models. Compared with BC, MBC had a faster adsorption rate and higher adsorption capacity of PHE. The adsorption equilibrium for PHE on MBC was achieved within 1.0 h. The maximum adsorption capacity of PHE on MBC was 97.6 mg g −1 based on the analysis of the Sips model, which was significantly higher than that of other sources of BCs. The adsorption mechanism of the two BCs was mainly attributed to the action of surface functional groups and π–π-conjugated reactions. The adsorption of PHE on MBC mainly occurred in the functional groups of C–O and Fe 3 O 4 , but that on BC was mainly in the functional groups of –OH, N–H, C=C and C–O.


2011 ◽  
Vol 287-290 ◽  
pp. 1620-1625
Author(s):  
Yan Wu ◽  
Zai Fang Deng ◽  
Yang Tao ◽  
Xue Gang Luo

Fixed-bed column studies for the removal of Ag(Ⅰ) and Cr(Ⅲ) from individual aqueous solutions using puffed rice husk were investigated in this work. The experiments were conducted to study the effect of important column parameters such as bed height, feed flow rate and feed initial concentration of solution. It was found that increasing bed depth yielded longer service time while increase in influent concentration and flow rate resulted in faster breakthrough. Bed Depth Service Time (BDST) model was applied to analyze the experimental data and the model parameters were evaluated. Good agreement of the experimental breakthrough curves with the model predictions was observed.


Sign in / Sign up

Export Citation Format

Share Document