Comparison of adsorption equilibrium models for the study of CL−, NO3− and SO42− removal from aqueous solutions by an anion exchange resin

2011 ◽  
Vol 190 (1-3) ◽  
pp. 300-307 ◽  
Author(s):  
Julien Dron ◽  
Alain Dodi
2008 ◽  
Vol 26 (9) ◽  
pp. 693-703 ◽  
Author(s):  
P. Senthil Kumar ◽  
K. Kirthika ◽  
K. Sathish Kumar

The removal of hexavalent chromium, Cr(VI), from aqueous solutions under different conditions using an anion-exchange resin (AXR) as an adsorbent was investigated under batch conditions. Such studies indicated that the percentage adsorption decreased with increasing initial Cr(VI) concentration, with the maximum removal of such ions occurred at a pH value of ca. 2.0. Both the Langmuir and Freundlich isotherm models were capable of reproducing the isotherms obtained experimentally. The sorption process was rapid during the first 20 min with equilibrium being attained within 30 min. The process followed first-order kinetics. The results demonstrate that such anion-exchange resins can be used for the efficient removal of Cr(VI) ions from water and wastewater.


2021 ◽  
Vol 27 (1) ◽  
pp. 200650-0
Author(s):  
Ji-Won Son ◽  
Hyun-Cheul Roh ◽  
Jae-Hwan Choi

The selective removal of specific ions was explored by using a capacitive deionization (CDI) system with a selective composite carbon electrode (SCCE). An SCCE was manufactured by coating a carbon electrode with anion-exchange resin (AER) powders. The correlation between the characteristics of the AERs and ion selectivity was analyzed, and the ion selectivity of the SCCE was verified through CDI experiments with a mixed solution of chloride, nitrate, and sulfate ions. The adsorption equilibrium results of the AERs showed that the ion selectivity of an AER was greatly influenced by its ion-exchange capacity (IEC). The higher the IEC value was, the higher the selectivity for the divalent sulfate ion, whereas the smaller the IEC was, the higher the selectivity for the nitrate ion. The CDI experimental results show that the equivalent fraction of ions adsorbed to the SCCE was consistent with the result of the adsorption equilibrium test. Therefore, the ion selectivity of the SCCE was governed by the ion selectivity of the AER coated on the electrode surface. Notably, as the current density applied to the cell increased, the AER could not maintain an adsorption equilibrium state, which resulted in a decrease in the ion selectivity of the SCCE.


Sign in / Sign up

Export Citation Format

Share Document