High-performance microbial fuel cell anodes obtained from sewage sludge mixed with fly ash

2018 ◽  
Vol 354 ◽  
pp. 27-32 ◽  
Author(s):  
Yufeng Jia ◽  
Huajun Feng ◽  
Dongsheng Shen ◽  
Yuyang Zhou ◽  
Ting Chen ◽  
...  
All Life ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 541-568
Author(s):  
Yilkal Dessie ◽  
Sisay Tadesse ◽  
Rajalakshmanan Eswaramoorthy ◽  
Yeshaneh Adimasu

2007 ◽  
Vol 73 (16) ◽  
pp. 5347-5353 ◽  
Author(s):  
Hanno Richter ◽  
Martin Lanthier ◽  
Kelly P. Nevin ◽  
Derek R. Lovley

ABSTRACT The ability of Pelobacter carbinolicus to oxidize electron donors with electron transfer to the anodes of microbial fuel cells was evaluated because microorganisms closely related to Pelobacter species are generally abundant on the anodes of microbial fuel cells harvesting electricity from aquatic sediments. P. carbinolicus could not produce current in a microbial fuel cell with electron donors which support Fe(III) oxide reduction by this organism. Current was produced using a coculture of P. carbinolicus and Geobacter sulfurreducens with ethanol as the fuel. Ethanol consumption was associated with the transitory accumulation of acetate and hydrogen. G. sulfurreducens alone could not metabolize ethanol, suggesting that P. carbinolicus grew in the fuel cell by converting ethanol to hydrogen and acetate, which G. sulfurreducens oxidized with electron transfer to the anode. Up to 83% of the electrons available in ethanol were recovered as electricity and in the metabolic intermediate acetate. Hydrogen consumption by G. sulfurreducens was important for ethanol metabolism by P. carbinolicus. Confocal microscopy and analysis of 16S rRNA genes revealed that half of the cells growing on the anode surface were P. carbinolicus, but there was a nearly equal number of planktonic cells of P. carbinolicus. In contrast, G. sulfurreducens was primarily attached to the anode. P. carbinolicus represents the first Fe(III) oxide-reducing microorganism found to be unable to produce current in a microbial fuel cell, providing the first suggestion that the mechanisms for extracellular electron transfer to Fe(III) oxides and fuel cell anodes may be different.


2017 ◽  
Vol 77 (11) ◽  
pp. 1359-1365 ◽  
Author(s):  
J.C. Carrillo-Rodríguez ◽  
S. García-Mayagoitia ◽  
R. Pérez-Hernández ◽  
M.T. Ochoa-Lara ◽  
F. Espinosa-Magaña ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (70) ◽  
pp. 40490-40497 ◽  
Author(s):  
Lizhen Zeng ◽  
Shaofei Zhao ◽  
Lixia Zhang ◽  
Miao He

A novel macroscale porous structure electrode, molybdenum carbide nanoparticles-modified carbonized cotton textile (Mo2C/CCT), was synthesized by a facile two-step method and used as anode material for high-performance microbial fuel cell (MFC).


Sign in / Sign up

Export Citation Format

Share Document