A Non-polluting Method for Rapidly Purifying Uranium-Containing Wastewater and Efficiently Recovering Uranium through Electrochemical Mineralization and Oxidative Roasting

2021 ◽  
pp. 125885
Author(s):  
Shao-yan Lv ◽  
Mi Li ◽  
Xiao-yan Wu ◽  
Xiao-wen Zhang ◽  
Yi-long Hua ◽  
...  
Keyword(s):  
2021 ◽  
pp. 105619
Author(s):  
Júlia Mont'Alverne Martins ◽  
Achilles Junqueira Bourdot Dutra ◽  
Marcelo Borges Mansur ◽  
Alexandre Silva Guimarães

2019 ◽  
Vol 55 (3) ◽  
pp. 343-349
Author(s):  
U. Erdenebold ◽  
C.-M. Sung ◽  
J.-P. Wang

Gold flotation concentrate may contain relatively high concentrations of valuable metals such as iron, copper, and zinc, and occasionally, even precious metals such as gold. The major components of the concentrate are SiO2, Fe2O3, and Al2O3, but it also contains reactive sulphide minerals such as pyrite. The sulphides in the flotation concentrate are fully converted into an oxide form during oxidative roasting, therefore, the chemical composition of the roasted concentrate is considered to be a copper slag. High temperature smelting with additives to dissolve Au from the gold concentrate into a molten copper was used in the research. Gold greatly dissolved at 1600?? under a CaO/SiO2 ratio of 1.25, suggesting the increase in the dissolution of gold into molten copper with decreasing viscosity of the molten slag-like concentrate at high temperatures.


2010 ◽  
Vol 51 (8) ◽  
pp. 1481-1485 ◽  
Author(s):  
Byung-Su Kim ◽  
Soo-Bock Jeong ◽  
Young-hun Kim ◽  
Hyung-Seok Kim

2019 ◽  
Vol 6 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Martina Orefice ◽  
Amy Van den Bulck ◽  
Bart Blanpain ◽  
Koen Binnemans

AbstractOxidative roasting of Nd–Fe‒B permanent magnets prior to leaching improves the selectivity in the recovery of rare-earth elements over iron. However, the dissolution rate of oxidatively roasted Nd–Fe‒B permanent magnets in acidic solutions is very slow, often longer than 24 h. Upon roasting in air at temperatures above 500 °C, the neodymium metal is not converted to Nd2O3, but rather to the ternary NdFeO3 phase. NdFeO3 is much more difficult to dissolve than Nd2O3. In this work, the formation of NdFeO3 was avoided by roasting Nd–Fe‒B permanent magnet production scrap in argon atmosphere, having an oxygen content of $$ p_{{{\text{O}}_{2} }} \, \le \,10^{ - 20} \;{\text{atm}}, $$pO2≤10-20atm, with the addition of 5 wt% of carbon as an iron reducing agent. For all the non-oxidizing iron roasting conditions investigated, the iron in the Nd–Fe‒B scrap formed a cobalt-containing metallic phase, clearly distinct from the rare-earth phase at microscopic level. The thermal treatment was optimized to obtain a clear phase separation of metallic iron and rare-earth phase also at the macroscopic level, to enable easy mechanical removal of iron prior to the leaching step. The sample roasted at the optimum conditions (i.e., 5 wt% carbon, no flux, no quenching step, roasting temperature of 1400 °C and roasting time of 2 h) was leached in the water-containing ionic liquid betainium bis(trifluoromethylsulfonyl)imide, [Hbet][Tf2N]. A leaching time of only 20 min was sufficient to completely dissolve the rare-earth elements. The rare-earth elements/iron ratio in the leachate was about 50 times higher than the initial rare-earth elements/iron ratio in the Nd–Fe‒B scrap. Therefore, roasting in argon with addition of a small amount of carbon is an efficient process step to avoid the formation of NdFeO3 and to separate the rare-earth elements from the iron, resulting in selective leaching for the recovery of rare-earth elements from Nd–Fe‒B permanent magnets.


2004 ◽  
Vol 40 (1) ◽  
pp. 57-73 ◽  
Author(s):  
Dusko Minic ◽  
Desimir Petkovic ◽  
N. Strbac ◽  
Ivan Mihajlovic ◽  
Zivan Zivkovic

In this paper, results of copper - lead matte investigations are presented. Investigated copper-lead matte is intermediate product of lead production in TREPCA-Zvecan. In the first part of the paper characterization of starting material is presented, consisting of: chemical composition analysis (XRQ), sceaning electron microscopy (SEM) and diffractometry (XRD). Thermal properties of matte investigated were determined using differential thermal analysis (DTA) at characteristic temperatures. Using results of induced analysis, mechanism of matte oxidation process was determined. In second part of the paper kinetic parameters describing oxidative roasting and afterwards leaching in sulfuric acid of copper-lead mate are presented.


Sign in / Sign up

Export Citation Format

Share Document