Did the Australopithecus anamensis-Australopithecus afarensis lineage wax and wane? A commentary to Du et al. (2020)

2021 ◽  
Vol 150 ◽  
pp. 102872
Author(s):  
Indrė Žliobaitė
Author(s):  
Francisco J. Ayala ◽  
Camilo J. Cela-Conde

This chapter analyzes the transition of the hominins from the Middle Pleistocene to the Late Pleistocene. Two alternative models are explored, the “Multiregional Hypothesis” (MH) and the “Replacement Hypothesis,” and how each model evaluates the existing relationships between the taxa Homo neanderthalensis and Homo sapiens. Next is the investigation of the transitional (or “archaic,” if this grade is taken into account) exemplars found in Europe, Africa, and Asia and their evolutionary significance. In particular, the comparison between H. erectus and H. sapiens in China and Java is investigated, as the main foundation of the MH. The chapter ends with the surprising discovery of Homo floresiensis and its description and interpretations concerning its taxonomic and phylogenetic significance. The correlation between brain development and technological progress is at odds with the attribution of perforators, microblades, and fishing hooks to a hominin with a small cranial volume, similar to that of Australopithecus afarensis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nashaiman Pervaiz ◽  
Hongen Kang ◽  
Yiming Bao ◽  
Amir Ali Abbasi

Abstract Background There has been a rapid increase in the brain size relative to body size during mammalian evolutionary history. In particular, the enlarged and globular brain is the most distinctive anatomical feature of modern humans that set us apart from other extinct and extant primate species. Genetic basis of large brain size in modern humans has largely remained enigmatic. Genes associated with the pathological reduction of brain size (primary microcephaly-MCPH) have the characteristics and functions to be considered ideal candidates to unravel the genetic basis of evolutionary enlargement of human brain size. For instance, the brain size of microcephaly patients is similar to the brain size of Pan troglodyte and the very early hominids like the Sahelanthropus tchadensis and Australopithecus afarensis. Results The present study investigates the molecular evolutionary history of subset of autosomal recessive primary microcephaly (MCPH) genes; CEP135, ZNF335, PHC1, SASS6, CDK6, MFSD2A, CIT, and KIF14 across 48 mammalian species. Codon based substitutions site analysis indicated that ZNF335, SASS6, CIT, and KIF14 have experienced positive selection in eutherian evolutionary history. Estimation of divergent selection pressure revealed that almost all of the MCPH genes analyzed in the present study have maintained their functions throughout the history of placental mammals. Contrary to our expectations, human-specific adoptive evolution was not detected for any of the MCPH genes analyzed in the present study. Conclusion Based on these data it can be inferred that protein-coding sequence of MCPH genes might not be the sole determinant of increase in relative brain size during primate evolutionary history.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Anjali M Prabhat ◽  
Catherine K Miller ◽  
Thomas Cody Prang ◽  
Jeffrey Spear ◽  
Scott A Williams ◽  
...  

The evolution of bipedalism and reduced reliance on arboreality in hominins resulted in larger lower limb joints relative to the joints of the upper limb. The pattern and timing of this transition, however, remains unresolved. Here, we find the limb joint proportions of Australopithecus afarensis, Homo erectus, and Homo naledi to resemble those of modern humans, whereas those of A. africanus, Australopithecus sediba, Paranthropus robustus, Paranthropus boisei, Homo habilis, and Homo floresiensis are more ape-like. The homology of limb joint proportions in A. afarensis and modern humans can only be explained by a series of evolutionary reversals irrespective of differing phylogenetic hypotheses. Thus, the independent evolution of modern human-like limb joint proportions in A. afarensis is a more parsimonious explanation. Overall, these results support an emerging perspective in hominin paleobiology that A. afarensis was the most terrestrially adapted australopith despite the importance of arboreality throughout much of early hominin evolution.


2016 ◽  
Vol 100 ◽  
pp. 35-53 ◽  
Author(s):  
Yohannes Haile-Selassie ◽  
Stephanie M. Melillo ◽  
Timothy M. Ryan ◽  
Naomi E. Levin ◽  
Beverly Z. Saylor ◽  
...  

2009 ◽  
Vol 57 (6) ◽  
pp. 739-750 ◽  
Author(s):  
F. Estebaranz ◽  
L.M. Martínez ◽  
J. Galbany ◽  
D. Turbón ◽  
A. Pérez-Pérez

Sign in / Sign up

Export Citation Format

Share Document