Open Anterior Release of the Superior Transverse Scapular Ligament for Decompression of the Suprascapular Nerve During Brachial Plexus Surgery

2016 ◽  
Vol 41 (7) ◽  
pp. e211-e215 ◽  
Author(s):  
Kate E. Elzinga ◽  
Matthew W.T. Curran ◽  
Michael J. Morhart ◽  
K. Ming Chan ◽  
Jaret L. Olson
2016 ◽  
Vol 125 (2) ◽  
pp. 355-362 ◽  
Author(s):  
Sumit Sinha ◽  
G. Lakshmi Prasad ◽  
Sanjeev Lalwani

OBJECT Mapping of the fascicular anatomy of the brachial plexus could provide the nerve surgeon with knowledge of fascicular orientation in spinal nerves of the brachial plexus. This knowledge might improve the surgical outcome of nerve grafting in brachial plexus injuries by anastomosing related fascicles and avoiding possible axonal misrouting. The objective of this study was to map the fascicular topography in the spinal nerves of the brachial plexus. METHODS The entire right-sided brachial plexus of 25 adult male cadavers was dissected, including all 5 spinal nerves (C5–T1), from approximately 5 mm distal to their exit from the intervertebral foramina, to proximal 1 cm of distal branches. All spinal nerves were tagged on the cranial aspect of their circumference using 10-0 nylon suture for orientation. The fascicular dissection of the C5–T1 spinal nerves was performed under microscopic magnification. The area occupied by different nerve fascicles was then expressed as a percentage of the total cross-sectional area of a spinal nerve. RESULTS The localization of fascicular groups was fairly consistent in all spinal nerves. Overall, 4% of the plexus supplies the suprascapular nerve, 31% supplies the medial cord (comprising the ulnar nerve and medial root of the median nerve [MN]), 27.2% supplies the lateral cord (comprising the musculocutaneous nerve and lateral root of the MN), and 37.8% supplies the posterior cord (comprising the axillary and radial nerves). CONCLUSIONS The fascicular dissection and definitive anatomical localization of fascicular groups is feasible in plexal spinal nerves. The knowledge of exact fascicular location might be translatable to the operating room and can be used to anastomose related fascicles in brachial plexus surgery, thereby avoiding the possibility of axonal misrouting and improving the results of plexal reconstruction.


2011 ◽  
Vol 69 (4) ◽  
pp. 660-665 ◽  
Author(s):  
Leandro Pretto Flores

OBJECTIVE: The study aims to demonstrate the techniques employed in surgery of the brachial plexus that are associated to evidence-based improvement of the functional outcome of these patients. METHOD: A retrospective study of one hundred cases of traumatic brachial plexus injuries. Comparison between the postoperative outcomes associated to some different surgical techniques was demonstrated. RESULTS: The technique of proximal nerve roots grafting was associated to good results in about 70% of the cases. Significantly better outcomes were associated to the Oberlin's procedure and the Sansak's procedure, while the improvement of outcomes associated to phrenic to musculocutaneous nerve and the accessory to suprascapular nerve transfer did not reach statistical significance. Reinnervation of the hand was observed in less than 30% of the cases. CONCLUSION: Brachial plexus surgery renders satisfactory results for reinnervation of the proximal musculature of the upper limb, however the same good outcomes are not usually associated to the reinnervation of the hand.


1996 ◽  
Vol 21 (2) ◽  
pp. 271-272
Author(s):  
Nigel E. Sharrock ◽  
Robert Hotchkiss ◽  
William J. Ennis ◽  
Andrew Weiland

Neurosurgery ◽  
2011 ◽  
Vol 70 (2) ◽  
pp. E516-E520 ◽  
Author(s):  
Leandro Pretto Flores

Abstract BACKGROUND AND IMPORTANCE: Restoration of elbow extension has not been considered of much importance regarding functional outcomes in brachial plexus surgery; however, the flexion of the elbow joint is only fully effective if the motion can be stabilized, what can be achieved solely if the triceps brachii is coactivated. To present a novel nerve transfer of a healthy motor fascicle from the ulnar nerve to the nerve of the long head of the triceps to restore the elbow extension function in brachial plexus injuries involving the upper and middle trunks. CLINICAL PRESENTATION: Case 1 is a 32-year-old man sustaining a right brachial extended upper plexus injury in a motorcycle accident 5 months before admission. The computed tomography myelogram demonstrated avulsion of the C5 and C6 roots. Case 2 is a 24-year-old man who sustained a C5-C7 injury to the left brachial plexus in a traffic accident 4 months before admission. Computed tomography myelogram demonstrated signs of C6 and C7 root avulsion. The technique included an incision at the medial border of the biceps, in the proximal third of the involved arm, followed by identification of the ulnar nerve, the radial nerve, and the branch to the long head of the triceps. The proximal stump of a motor fascicle from the ulnar nerve was sutured directly to the distal stump of the nerve of the long head of the triceps. Techniques to restore elbow flexion and shoulder abduction were applied in both cases. Triceps strength Medical Research Council M4 grade was obtained in both cases. CONCLUSION: The attempted nerve transfer was effective for restoration of elbow extension in primary brachial plexus surgery; however, it should be selected only for cases in which other reliable donor nerves were used to restore elbow flexion.


Neurosurgery ◽  
2006 ◽  
Vol 59 (4) ◽  
pp. 858-869 ◽  
Author(s):  
Willem J.R. van Ouwerkerk ◽  
Bernard M.J. Uitdehaag ◽  
Rob L.M. Strijers ◽  
Frans Nollet ◽  
Kurt Holl ◽  
...  

Abstract OBJECTIVE: A systematic follow-up of infants with an obstetric brachial plexus lesion of C5 and C6 or the superior trunk showing satisfactory spontaneous recovery of shoulder and arm function except for voluntary shoulder exorotation, who underwent an accessory to suprascapular nerve transfer to improve active shoulder exorotation, to evaluate for functional recovery, and to understand why other superior trunk functions spontaneously recover in contrast with exorotation. METHODS: In 54 children, an accessory to suprascapular nerve transfer was performed as a separate procedure at a mean age of 21.7 months. Follow-up examinations were conducted before and at 4, 8, 12, 24, and 36 months after operation and included scoring of shoulder exorotation and abduction. Intraoperative reactivity of spinatus muscles and additional needle electromyographic responses were registered after electrostimulation of suprascapular nerves. Histological examination of suprascapular nerves was performed. Trophy of spinatus muscles was followed by magnetic resonance imaging scanning. The influence of perinatal variables and results of ancillary investigations on outcome were evaluated. RESULTS: Exorotation improved from 70 degrees to functional levels exceeding 0 degrees, except in two patients. Abduction improved in 27 patients, with results of 90 degrees or more in 49 patients. Electromyography at 4 months did not show signs of denervation in 39 out of 40 patients. Intraoperative electrostimulation of suprascapular nerves elicited spinatus muscle reaction in 44 out of 48 patients. Histology of suprascapular nerves was normal. Preoperative magnetic resonance imaging scans showed only minor wasting of spinatus muscles in contrast with major wasting after successful operations. CONCLUSION: An accessory to suprascapular nerve transfer is effective to restore active exorotation when performed as the primary or a separate secondary procedure in children older than 10 months of age. Contradictory spontaneous recovery of other superior trunk functions and integrity of suprascapular nerves, as well as absence of spinatus muscle wasting direct to central nervous changes are possible main causes for the lack of exorotation.


2016 ◽  
Vol 33 (03) ◽  
pp. 155-156
Author(s):  
O. Azu ◽  
D. Ofusori ◽  
E. Naidu ◽  
J. Naidu

Abstract Introduction: Ossification of the superior transverse scapular ligament is one of the factors considered in the classification of the suprascapular notch based on shape. Variation in morphology of the superior transverse scapular ligament is always considered a critical factor in the diagnosis of suprascapular nerve entrapment syndrome. Case Report: This study reports the complete ossification of the superior transverse scapular ligament in a South African scapula and a note on its clinical anatomy. Conclusion: This anatomical knowledge is of extreme clinical relevance to surgeons in relation to various syndromes associated with the shoulder region in the South African population.


2004 ◽  
Vol 16 (5) ◽  
pp. 1-13
Author(s):  
Martijn J. A. Malessy ◽  
Godard C. W. de Ruiter ◽  
Kees S. de Boer ◽  
Ralph T. W. M. Thomeer

Object The aim of this retrospective study was to evaluate the restoration of shoulder function by means of supra-scapular nerve neurotization in adult patients with proximal C-5 and C-6 lesions due to a severe brachial plexus traction injury (BPTI). The primary goal of brachial plexus reconstructive surgery was to restore the biceps muscle function and, secondarily, to reanimate shoulder function. Methods Suprascapular nerve neurotization was performed by grafting the C-5 nerve in 24 patients and by accessory or hypoglossal nerve transfer in 29 patients. Additional neurotization involving the axillary nerve could be performed in 18 patients. Postoperative needle electromyography studies of the supraspinatus, infraspinatus, and deltoid muscles showed signs of reinnervation in most patients; however, active glenohumeral shoulder function recovery was poor. In nine (17%) of 53 patients supraspinatus muscle strength was Medical Research Council (MRC) Grade 3 or 4 and in four (8%) infraspinatus muscle power was Grade 3 or 4. In 18 patients in whom deltoid muscle reinnervation was attempted, MRC Grade 3 or 4 function was demonstrated in two (11%). In the overall group, eight patients (15%) exhibited glenohumeral abduction with a mean of 44 ± 17° (standard deviation [SD]) (median 45°) and four patients (8%) exhibited glenohumeral exorotation with a mean of 48 ± 24° (SD) (median 53°). In only three patients (6%) were both functions regained. Conclusions The reanimation of shoulder function in patients with proximal C-5 and C-6 BPTIs following supra-scapular nerve neurotization is disappointingly low.


2013 ◽  
Vol 2013 ◽  
pp. 1-3
Author(s):  
José Aderval Aragão ◽  
Luiza Neves de Santana Teles ◽  
Ana Bárbara de Jesus Chaves ◽  
Jéssica Cândida Oliveira Prado ◽  
Priscila Soares Pereira ◽  
...  

Introduction. The superior transverse scapular ligament (STSL) links the margins of the suprascapular notch and converts it into a foramen, through which, the suprascapular nerve and, on some rare occasions, the suprascapular vessels pass. This conversion often results from partial or complete ossification of the STSL and may produce compressive symptoms in the suprascapular nerve. Material and Method. Twenty shoulders from human fetuses were dissected without the aid of optical instruments and, using a digital pachymeter of precision 0.01 millimeters, length measurements and thickness measurements were made. The fetal age was from 21 to 33 weeks of gestation, with a mean of 27.6±4.14 weeks. Results. There was no statistically significant difference in STSL length or any difference in the thicknesses at the medial and lateral extremities between the halves of the body (P≥0.05). However, in the left half of the body, the medial extremity of the STSL was significantly thinner than the lateral extremity (P≤0.05). Conclusion. Anatomical and morphometric details about the STSL were described in human fetuses. These findings, in fetuses, may encourage the pursuit of further studies to understand the morphofunctional role and meaning of this small ligament.


Sign in / Sign up

Export Citation Format

Share Document