scholarly journals Comparison of alternative models for simulating anomalous solute transport in a large heterogeneous soil column

2009 ◽  
Vol 377 (3-4) ◽  
pp. 391-404 ◽  
Author(s):  
Guangyao Gao ◽  
Hongbin Zhan ◽  
Shaoyuan Feng ◽  
Guanhua Huang ◽  
Xiaomin Mao
2009 ◽  
Vol 14 (9) ◽  
pp. 966-974 ◽  
Author(s):  
Guangyao Gao ◽  
Shaoyuan Feng ◽  
Hongbin Zhan ◽  
Guanhua Huang ◽  
Xiaomin Mao

2013 ◽  
Author(s):  
J. Perret ◽  
S.O. Prasher ◽  
A. Kanztas ◽  
and C. Langford

2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Gongsheng Li ◽  
De Yao ◽  
Yongzai Wang ◽  
Xianzheng Jia

A real undisturbed soil-column infiltrating experiment in Zibo, Shandong, China, is investigated, and a nonlinear transport model for a solute ion penetrating through the column is put forward by using nonlinear Freundlich's adsorption isotherm. Since Freundlich's exponent and adsorption coefficient and source/sink terms in the model cannot be measured directly, an inverse problem of determining these parameters is encountered based on additional breakthrough data. Furthermore, an optimal perturbation regularization algorithm is introduced to determine the unknown parameters simultaneously. Numerical simulations are carried out and then the inversion algorithm is applied to solve the real inverse problem and reconstruct the measured data successfully. The computational results show that the nonlinear advection-dispersion equation discussed in this paper can be utilized by hydrogeologists to research solute transport behaviors with nonlinear adsorption in porous medium.


1995 ◽  
Vol 31 (8) ◽  
pp. 1935-1944 ◽  
Author(s):  
Georgia Destouni ◽  
Wendy Graham

2015 ◽  
Vol 10 (1) ◽  
pp. 139
Author(s):  
Panom Chaiyasit ◽  
Piya Duangpatra ◽  
Visoot Verasan ◽  
Varawoot Vudhivanich

<p class="zhengwen"><span lang="EN-GB">An experiment was conducted on the purpose to study movement of water and salt through soil column. Salt-affected paddy soil was assessed for its relevant transport parameters consisting of the hydraulic and the solute transport parameters. The hydraulic parameters included soil hydraulic conductivity (K<sub>s</sub>) and the van Genuchten’s parameters (θ<sub>s</sub>, θ<sub>r</sub>, α, and n). In this experiment the solute transport parameters was referred to the coefficient of Langmuir’s isotherm which consisted of k<sub>d</sub> and η. Experience showed that hydraulic parameters were sensitive to changes of soil bulk density (ρ<sub>b</sub>). Therefore pedotransfer functions describing the relations between these parameters with ρ<sub>b</sub> were established. Straight line functions were found for θ<sub>s</sub> and n, exponential functions were found for α and K<sub>s</sub>, and logarithmic function was found for θ<sub>r</sub>. Packing the soil in the physical column inevitably caused horizontal differentiation of different ρ<sub>b</sub>. Bulk density of each layer was estimated by analysis of water flow through soil column at steady-state. Then ρ<sub>b</sub> of each layer was calculated from the relation K<sub>s</sub> (ρ<sub>b</sub>). After the ρ<sub>b</sub> was known the van Genuchten’s parameters were calculated from the pedotransfer functions. A physical column of 4 inches diameter and 50 cm length was constructed. Sodium chloride solution EC 6 dS/m was fed on soil surface during the process of salinization and the feeding solution was changed to fresh water during the process of desalinization. Breakthrough solution was analyzed for Na concentration and the breakthrough curves were constructed. The relevant parameters as well as initial and boundary conditions were fed into Hydrus-1D on the purpose to simulate the breakthrough curves. Statistical comparison results using t-test and RMSE suggested that Hydrus-1D could be used successfully to monitor transport of water and salt through soil column.</span></p><p class="zhengwen"><span lang="EN-GB">Five scenarios concerning water and solute transport through soil profile under rice and mung bean cropping were simulated using Hydrus-1D. Simulation results suggested that continuous flooding was the most efficient way to leach soluble salts down to ground water. Wet/dry irrigation scheme for rice production could drain salts only when rice crop was in the first period of growth where crop water uptake was small. During later stages of growth concentration profile of Na remained almost unchange indicating negligible downward movement of salts. Leaving the soil to dry naturally during the dry season caused upward accumulation of salt to the degree smaller than cultivating mung bean since water content and hence the diffusion coefficient of the soil were higher and more favorable for upward salt diffusion than in the former case. Inserting the capillary rise hindering soil layer underneath mung bean root zone was found to retard upward diffusion of salt to the degree comparable to leaving the soil to dry naturally.</span></p>


Sign in / Sign up

Export Citation Format

Share Document