Longitudinal and transverse dispersion coefficients of 2D contaminant transport model for mixing analysis in open channels

2020 ◽  
Vol 583 ◽  
pp. 124302 ◽  
Author(s):  
Jaehyun Shin ◽  
Il Won Seo ◽  
Donghae Baek
1999 ◽  
Author(s):  
Bohdan Cybyk ◽  
Jay Boris ◽  
Theodore Young, Jr. ◽  
Charles Lind ◽  
Alexandra Landsberg

2007 ◽  
Vol 12 (3) ◽  
pp. 329-343 ◽  
Author(s):  
A. J. Chamkha

A one-dimensional advective-dispersive contaminant transport model with scale-dependent dispersion coefficient in the presence of a nonlinear chemical reaction of arbitrary order is considered. Two types of variations of the dispersion coefficient with the downstream distance are considered. The first type assumes that the dispersivity increases as a polynomial function with distance while the other assumes an exponentiallyincreasing function. Since the general problem is nonlinear and possesses no analytical solutions, a numerical solution based on an efficient implicit iterative tri-diagonal finitedifference method is obtained. Comparisons with previously published analytical and numerical solutions for special cases of the main transport equation are performed and found to be in excellent agreement. A parametric study of all physical parameters is conducted and the results are presented graphically to illustrate interesting features of the solutions. It is found that the chemical reaction order and rate coefficient have significant effects on the contaminant concentration profiles. Furthermore, the scale-dependent polynomial type dispersion coefficient is predicted to obtain significant changes in the contaminant concentration at all dimensionless time stages compared with the constant dispersion case. However, relatively smaller changes in the concentration level are predicted for the exponentially-increasing dispersion coefficient.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Xingwei Wang ◽  
Jiajun Chen ◽  
Hao Wang ◽  
Jianfei Liu

Due to the uneven distribution of pollutions and blur edge of pollutant area, there will exist uncertainty of source term shape in advective-diffusion equation model of contaminant transport. How to generalize those irregular source terms and deal with those uncertainties is very critical but rarely studied in previous research. In this study, the fate and transport of contaminant from rectangular and elliptic source geometry were simulated based on a three-dimensional analytical solute transport model, and the source geometry generalization guideline was developed by comparing the migration of contaminant. The result indicated that the variation of source area size had no effect on pollution plume migration when the plume migrated as far as five times of source side length. The migration of pollution plume became slower with the increase of aquifer thickness. The contaminant concentration was decreasing with scale factor rising, and the differences among various scale factors became smaller with the distance to field increasing.


1968 ◽  
Vol 8 (02) ◽  
pp. 195-204 ◽  
Author(s):  
Robert C. Hassinger ◽  
Dale U. Von Rosenberg

Abstract Transverse dispersion has received considerably less treatment in the literature than has longitudinal dispersion. Different methods for determining transverse dispersion coefficients have been used in different investigations, and the results obtained have not been consistent enough to permit accurate generalizations as to the effect of various physical parameters on the magnitude of these coefficients. A numerical solution to the differential equation describing transverse dispersion in the absence of longitudinal dispersion was obtained to enable one to calculate the dispersion coefficient from experimental results. The more general dispersion equation including longitudinal dispersion also was solved numerically to give quantitative limits of a dimensionless group within which the assumption of negligible longitudinal dispersion is justified. Possible experimental procedures were examined, and one utilizing a cylindrical packed column was chosen for the determination of transverse dispersion coefficients. Values of these coefficients were determined for a system of two miscible organic fluids of equal density and viscosity, for two sizes of packing material over a wide range of flow rates in the laminar regime. The dispersion coefficient was found to decrease, for a constant value of the product of packing size and interstitial velocity, as the size of the packing material particles increased. Introduction Longitudinal dispersion has received extensive treatment in the literature, and consequently is better understood than its orthogonal counterpart, transverse dispersion. Many mathematical models of dispersion processes assume that transverse dispersion is rapid enough to damp out any radial concentration gradients and therefore may be neglected. Laboratory and production results, however, indicate that this is a poor assumption. Various experimental procedures for determining transverse dispersion coefficients have been used in previous investigations, but the results have generally been expressed by similar correlations. The transverse dispersion coefficients obtained, however, have often varied considerably for given values of the correlation parameters. We feel that further experimental determinations of transverse dispersion coefficients will help alleviate some of the inconsistencies in these empirical correlations. One assumption implicit in all previous investigations is that of negligible longitudinal dispersion in the experimental system. An attempt to justify this assumption often is made using intuitive reasoning, but it is apparent that this reasoning must break down as the condition of zero flow rate is approached. A mathematical examination of the equations describing the system yields physical limits outside of which the assumption of negligible longitudinal dispersion is invalid. Background In a porous medium, the "effective molecular diffusivity" De is less than the molecular diffusivity D measured in the absence of a porous medium, due to the tortuous path which a diffusing molecule must travel. Various authors have reported values of the ratio De/D in the range of 0.6 to 0.7. When there is fluid flow within the porous medium, mass transfer occurs by convective dispersion as well as by molecular diffusion. These are separate phenomena and can be treated as such on a microscopic scale. However, the mathematical complexity is such that only extremely simple geometries could be considered, and the results hardly would be applicable to the complex geometries existent in actual porous media. SPEJ P. 195ˆ


Sign in / Sign up

Export Citation Format

Share Document